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The structure of the human brain is highly heritable, and is thought to be influenced by many common genetic
variants, many of which are currently unknown. Recent advances in neuroimaging and genetics have allowed
collection of both highly detailed structural brain scans and genome-wide genotype information. This wealth of
information presents a new opportunity to find the genes influencing brain structure. Here we explore the
relation between448,293 single nucleotidepolymorphisms in eachof 31,622 voxels of the entire brain across 740
elderly subjects (mean age±s.d.: 75.52±6.82years; 438male) including subjectswithAlzheimer's disease,Mild
Cognitive Impairment, andhealthy elderly controls fromtheAlzheimer'sDiseaseNeuroimaging Initiative (ADNI).
We used tensor-based morphometry to measure individual differences in brain structure at the voxel level
relative to a study-specific template based on healthy elderly subjects. We then conducted a genome-wide
association at each voxel to identify genetic variants of interest. By studying only the most associated variant at
each voxel, we developed a novel method to address the multiple comparisons problem and computational
burden associated with the unprecedented amount of data. No variant survived the strict significance criterion,
but several genes worthy of further exploration were identified, including CSMD2 and CADPS2. These genes have
high relevance tobrain structure. This is thefirst voxelwise genomewide association study to our knowledge, and
offers a novel method to discover genetic influences on brain structure.
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Introduction

A key goal in imaging neuroscience is to discover specific
genetic variants that influence brain structure and function (Glahn
et al., 2007a; Glahn et al., 2007b). The dynamic trajectory of brain
development and aging throughout life is strongly influenced by
genetic factors, and genetic variants have been discovered that
increase the risk for Alzheimer's disease (Corder et al., 1993), other
mental illness (Gottesman and Gould, 2003; Meyer-Lindenberg and
Weinberger, 2006; Purcell et al., 2009) and even obesity (Frayling
et al., 2007; Ho et al., submitted for publication). The goals are
both scientific and practical: by selecting those at genetic risk for
early treatment, drug trials will be better powered to detect
treatment effects (Frisoni et al., 2010). A more mechanistic
understanding of mental illness will be achieved if gene variants
over-represented in patients are studied both at the molecular
level and in terms of their effects on brain structure.

Early neuroimaging studies of twins found that several aspects of
brain structure are under strong genetic control (Thompson et al.,
2001; Posthuma et al., 2002) and that common sets of genes may
dy (vGWAS), NeuroImage (2010), doi:10.1016/j.
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influence brain structure and cognition (Posthuma et al., 2002). These
“first-generation” studies estimated the relative influence of genetic
contributions from relatives or family members, based on the
expected genetic similarity among different types of relatives. Studies
of identical and fraternal twins, and their siblings, have consistently
identified heritable aspects of brain structure (Thompson et al., 2001;
Styner et al., 2005; Hulshoff Pol et al., 2006; Peper et al., 2007; Schmitt
et al., 2008; Brun et al., 2009; Chou et al., 2009). Except for the
genotyping necessary to confirm the zygosity of twins in these
studies, specific variations at the DNA level are not used in these
analyses.

Early studies that used more detailed genotype information
focused on specific candidate gene effects on brain structure. Several
studies of candidate genes such as APOE, COMT, and BDNF have
divided populations into carriers and non-carriers of risk polymorph-
isms within these genes, and detected systematic differences in brain
structure using a standard statistical comparison of two groups (Egan
et al., 2001; Pezawas et al., 2004; Hua et al., 2008; Chiang et al., 2009).

More recently, a second generation of studies has used genome-
wide scans to search the entire genome for genetic polymorphisms
that influence brain structure. In Stein et al. (in press), a common
variant in the GRIN2B glutamate receptor gene, was found to be over-
represented in Alzheimer's disease and was associated with ∼1.5%
lower temporal lobe volume per risk allele in the elderly (N=742
subjects; Pb5×10−7). Genome-wide searches have not generally
been the most efficient or feasible approach in imaging genetics, as
they require large samples of subjects to discover gene effects that
survive stringent multiple comparisons corrections for searching over
the entire genome. However, several international efforts are now
underway to scan genotyped healthy and diseased subjects with the
goal of discovering which genetic variants contribute to brain
architecture (Thompson and Martin, 2010).

Perhaps surprisingly, no genome-wide study of brain images has
used the armory of statistical methods that are now standard in
human brainmapping, such as statistical parametricmapping (Friston
et al., 1994; Frackowiak, 2004). One study has looked at statistical
power for statistical parametric mapping with simulated genome-
wide data (Hayasaka, 2009), but no experimental whole-brain whole-
genome approach has been implemented to our knowledge. Most
twin morphometric studies still break up the brain into subregions
(Schmitt et al., 2007) and run genetic analysis on the numerical
summaries (subregions).

By contrast, voxel-based morphometric approaches can make
detailed 3D images of volume differences throughout the brain,
without the need to specify a priori regions of interest or time
consuming manual tracing of anatomy in brain images. These maps
of individual differences in brain morphometry make it possible to
create detailed maps of gene and environmental effects on the brain,
identifying spatially-varying patterns of genetic control that may not
be evident if the images were summarized using a few summary
indices. Maps of genetic influences on cortical anatomy reveal strong
genetic control of frontal anatomy (Thompson et al., 2001), and
regionally-varying gene effects (Panizzon et al., 2009). Genetic maps
based on tensor-based morphometry suggest that there may be
some gradients in the degree of genetic influence, with earlier
developing occipital lobe structures showing stronger genetic control
than frontal brain regions that mature over a more protracted
developmental time-course (Brun et al., 2009; Lee et al., submitted
for publication).

Here we extend the notion of statistical parametric mapping, using
voxel-based methods, to include genome-wide association (GWAS)
data in large populations. The result may be termed voxelwise GWAS
(or vGWAS). GWAS is usually applied to study a single trait, such as IQ
or the diagnosis of a specific disease, but here it is applied at each
location in a brain image. The result is a 3Dmap of the specific genetic
variants that have the greatest statistical effect in accounting for
Please cite this article as: Stein, J.L., et al., Voxelwise genome-wide
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volume variations in each part of the brain, and a method to assess
their statistical significance.

Recent advances in neuroimaging and genetics have made it
possible, and financially feasible, to scan populations with multi-
modality brain imaging and collect genome-wide data (Toga, 2002;
McCarthy et al., 2008). The Alzheimer's Disease Neuroimaging
Initiative (ADNI) has recently acquired genome-wide genotype data
as well as structural MRI scans of 740 subjects (Mueller et al., 2005).
This wealth of data is a blessing and a burden: 448,293 genotypes and
31,622 voxels in the brain in each of 740 subjects present powerful
and previously unknown spatial and genetic resolution to detect
specific variants that influence the brain. However, this vast amount
of data requires new ways to deal with the computational load and
account statistically for multiple comparisons. A genetic association is
usually conducted by performing a linear regression of a phenotype
on each genotype of interest, controlling for other confounding
variables of no interest. Generally, a genome-wide association study
examines only a few phenotypes of interest (Wellcome Trust Case
Control Consortium, 2007; Sabatti et al., 2009). When conducting a
voxelwise genome-wide association study, each voxel represents a
phenotype, so a regression must be run at each voxel and at each SNP
(∼1.4×1010 tests), which requires large amounts of computation
time (years) if run serially on one computer. Parallelizing this process
across a computing cluster can ease the computational burden, giving
results in a reasonable amount of time (days). Additionally, by
conducting many statistical tests (in this case ∼1.4×1010) on the
same dataset, we are highly prone to false-positive findings (Curran-
Everett, 2000). Finding a method to determine only those genetic hits
that are interesting to pursue without overlooking those with
potentially important effects is a difficult question explored further
here.

For the first time, we conducted a voxelwise genome-wide
association study (vGWAS) in 740 subjects to discover genes
influencing brain structure across the entire brain. Each genetic
variant identified is a potential candidate with the ability to effect
brain structure. If these brain traits lie on the path from genes to
disorders that involve the brain (Gottesman and Gould, 2003), they
could represent candidates for further study in neurological and
psychiatric diseases.

Materials and methods

Sample

Neuroimaging and genetic data were acquired from 818 subjects
as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), a
large 5-year study launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies, and non-profit organizations, as a
$60 million, public-private partnership. The goal of the ADNI study
is to determine biological markers of Alzheimer's disease through
neuroimaging, genetics, neuropsychological tests and other measures
in order to develop new treatments, monitor their effectiveness, and
lessen the time of clinical trials. The Principal Investigator of this
initiative is Michael W. Weiner, M.D., VA Medical Center and
University of California – San Francisco. Subjects were recruited
from 58 sites in the United States. The study was conducted according
to the Good Clinical Practice guidelines, the Declaration of Helsinki,
and U.S. 21 CFR Part 50—Protection of Human Subjects, and Part 56—
Institutional Review Boards. Written informed consent was obtained
from all participants before protocol-specific procedures were
performed. All data acquired as part of this study are publicly
available (http://www.loni.ucla.edu/ADNI/).

All subjects underwent thorough clinical and cognitive assessment
at the time of scan acquisition to determine diagnosis. The mini-
association study (vGWAS), NeuroImage (2010), doi:10.1016/j.
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mental state exam (MMSE) was administered to provide a global
measure of mental status (Cockrell and Folstein, 1988). The clinical
dementia rating (CDR) was used to assess dementia severity (Morris,
1993). Healthy volunteer status was determined through MMSE
scores between 24 and 30 (inclusive), a CDR of 0, non-depressed, non-
MCI, and non-demented. MCI diagnosis was determined by MMSE
scores between 24 and 30 (inclusive), a memory complaint, objective
memory loss measured by education adjusted scores on the Wechsler
Memory Scale Logical Memory II, a CDR of 0.5, absence of significant
levels of impairment in other cognitive domains, essentially preserved
activities of daily living, and an absence of dementia. Diagnosis of AD
was made according to NINCDS-ADRDA criteria for probable AD
(McKhann et al., 1984), MMSE scores between 20 and 26 (inclusive),
and CDR of 0.5 or 1.0.

Population stratification is a known problem in genetic association
analyses, which can produce false-positive or false-negative results
(McCarthy et al., 2008). When multiple subpopulations are present in
the data (population stratification), spurious associations (or lack of
associations) can result from allele frequency differences between
populations rather than associations with the phenotype (Lander and
Schork, 1994). 818 subjects were genotyped as part of the ADNI study.
However, only unrelated Caucasian subjects (non-Hispanic; N=740)
identified by self-report and confirmed by MDS analysis (see Stein et
al., in press) were included to reduce population stratification effects.
Volumetric brain differences were assessed in 173 AD patients (78
female/95 male; mean age±standard deviation=75.54±7.66), 361
MCI subjects (130 female/231 male; 75.16±7.29), and 206 healthy
elderly subjects (112 male/94 female; 76.13±4.94). The genome-
wide analyses were not split into diagnostic groups as the goal was to
present as broad a phenotypic continuum (Petersen, 2000) as
possible, to provide the highest power to detect genetic associations.

MRI analysis methods

3D T1-weighted baseline brain MRI scans were analyzed using
tensor-based morphometry (TBM) as detailed in a previous study
(Hua et al., 2008). Briefly, high-resolution structural brain MRI scans
were acquired at 58 ADNI sites with 1.5 TMRI scanners using a sagittal
3D MP-RAGE sequence developed for consistency across sites (Jack et
al., 2008) (TR=2400 ms, TE=1000 ms, flip angle=8°, field of
view=24 cm, final reconstructed voxel resolution=0.9375×
0.9375×1.2 mm3). Images were calibrated with phantom-based
geometric corrections to ensure consistency across scanners. Addi-
tional image corrections included (Jack et al., 2008): (1) correction of
geometric distortions due to gradient non-linearity, (2) adjustment
for image intensity inhomogeneity due to B1 field non-uniformity
using calibration scans, (3) reducing residual intensity inhomogene-
ity, and (4) geometric scaling according to a phantom scan acquired
for each subject to adjust for scanner- and session-specific calibration
errors. Images were linearly registered with 9 parameters to the
International Consortium for Brain Imaging template (ICBM-53)
(Mazziotta et al., 2001) to adjust for differences in brain position
and scaling.

For TBM analysis, the protocol was identical to that of a prior
study analyzing the clinical correlates of temporal lobe atrophy (Hua
et al., 2008) in a smaller population; since then, genome-wide
genotype data was collected. First, a minimal deformation template
(MDT) was created for the healthy elderly group to serve as an
unbiased average template image to which all other images were
warped using a non-linear inverse-consistent elastic intensity-based
registration algorithm (Leow et al., 2005). Volumetric tissue differ-
ences were assessed at each voxel in all individuals by calculating the
determinant of the Jacobianmatrix of the deformation, which encodes
local volume excess or deficit relative to the mean template image.
The maps of volumetric tissue differences were then down-sampled
using trilinear interpolation to 4×4×4 mm3 isotropic voxel resolu-
Please cite this article as: Stein, J.L., et al., Voxelwise genome-wide
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tion for computational efficiency. The percentage volumetric differ-
ence relative to a population-based brain template at each voxel
served as a quantitative measure of brain tissue volume difference for
genome-wide association.

DNA isolation and SNP genotyping methods

DNA was isolated from B-lymphocyte cells taken from blood
(Neitzel, 1986) and extracted (Lahiri et al., 1992) using standard
procedures. 7 ml of EDTA blood was extracted using the QIAamp DNA
Blood Maxi Kit (Qiagen, Inc., Valencia, CA). Samples were processed
according to themanufacturer's protocol. Genomic DNA sampleswere
analyzed on the Human610-Quad BeadChip (Illumina, Inc., San Diego,
CA) according to the manufacturer's protocols (Infinium HD Assay;
Super Protocol Guide; Rev. A, May 2008). Before initiation of the assay,
50 ng of genomic DNA from each sample was examined qualitatively
on a 1% Tris-acetate-EDTA agarose gel for visual signs of degradation.
Any degraded DNA samples were excluded from further analysis.
Samples were quantitated in triplicate with PicoGreen® reagent
(Invitrogen, Carlsbad, CA) and diluted to 50 ng/μl in Tris-EDTA buffer
(10mM Tris, 1 mM EDTA, pH 8.0). 200 ng of DNAwas then denatured,
neutralized, and amplified for 22 h at 37 °C (this is termed the MSA1
plate). The MSA1 plate was then fragmented with FMS reagent
(Illumina) at 37 °C for 1 h and then precipitated with 2-propanol and
incubated at 4 °C for 30 min. The resulting blue precipitate was then
resuspended in RA1 reagent (Illumina) at 48 °C for 1 h. The samples
were then denatured (95 °C for 20 min) and immediately hybridized
onto BeadChips at 48 °C for 20 h. BeadChips were then washed and
subjected to single base extension and staining. Finally, the BeadChips
were coated with XC4 reagent (Illumina), dessicated, and imaged on
the BeadArray Reader (Illumina).

Genetic analysis

Genome-wide genotype information was collected at 620,901
markers. Multiple types of genetic variants were genotyped, but only
Single Nucleotide Polymorphisms (SNPs) were included in this
analysis. Alleles on the forward strand are reported. Individual
markers were excluded from the analysis that did not satisfy the
following quality criteria based on previous genome-wide association
studies (Wellcome Trust Case Control Consortium, 2007): genotype
call rate b95% (42,670 SNPs removed), significant deviation from
Hardy–Weinberg equilibrium Pb5.7×10−7 (871 markers removed),
minor allele frequency b0.10 (161,354 SNPs removed), and a
platform-specific recommended quality control score of b0.15
(variable number of SNPs removed across subjects). A minor allele
frequency cut-off of 0.10 (10%) was used to ensure that sufficient
numbers of subjects would be found in our sample in each genotypic
group (homozygous major allele, heterozygous, homozygous minor
allele) using an additive genetic model. If alleles are in Hardy–
Weinberg equilibrium, a minor allele frequency cut off of 0.10 ensures
that at least 7 subjects are in the smallest genotypic category. If this
cut-off is not imposed, there is a risk of findings being driven by a
small number of subjects in the sample, which may be less robust to
sampling effects. 448,293 SNPs remained for analysis after quality
control. Missing data still occurs over these remaining SNPs, but after
filtering N95% of the subjects must have a successfully genotyped SNP
for it to be included.

Association was conducted using a modified version of the Plink
software package (Purcell et al., 2007) (version 1.05; http://pngu.
mgh.harvard.edu/purcell/plink/) to conduct a genome-wide associa-
tion at each of 31,622 voxels within a whole-brain mask of the MDT
across all 740 subjects. At each voxel, a regression was conducted at
each SNP with the number of minor alleles, age, and sex as the
independent variables and the quantitative phenotype (percentage
volume difference relative to a sample specific template at each voxel)
association study (vGWAS), NeuroImage (2010), doi:10.1016/j.

http://pngu.mgh.harvard.edu/purcell/plink/
http://pngu.mgh.harvard.edu/purcell/plink/
http://dx.doi.org/10.1016/j.neuroimage.2010.02.032
http://dx.doi.org/10.1016/j.neuroimage.2010.02.032


Table 1
Number of SNPs measured and the effective number of tests (Meff) on each
chromosome. The effective number of tests was not estimated in sex chromosomes
or for mitochondrial DNA, where the effective number of tests was set to be equal to the
number of SNPs measured in those regions, rather than a smaller number. This is the
most conservative estimate. Chromosome XY refers to SNPs on both the X and Y
chromosomes.

Chr Number of SNPs Meff

1 33,850 20,205
2 36,384 21,747
3 30,765 18,275
4 27,072 15,972
5 27,396 16,245
6 30,054 16,669
7 24,446 14,680
8 24,768 14,710
9 21,283 13,231
10 23,089 13,806
11 21,796 13,066
12 21,461 12,787
13 16,605 9809
14 14,501 8916
15 13,355 8557
16 13,460 9111
17 11,721 7764
18 13,198 8232
19 7,895 5425
20 11,169 7148
21 6,582 4193
22 6,757 4341
X 10,637 10,637
Y 12 12
XY 25 25
Mitochondrial 12 12

Total 448,293 275,575
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as the dependent variable, assuming an additive genetic model. To
simplify and condense the large results (∼140 MB) output at each
voxel, the open-source Plink softwarewasmodified to only output the
identifier and P-value of the most associated SNP (21 bytes). Each
genome-wide regression required ∼9min of computation time, so the
process was split for parallel computing across 300 cluster nodes
using the Laboratory of Neuro Imaging (LONI) pipeline (http://
pipeline.loni.ucla.edu/). The total computation time was approxi-
mately 27 h.

An additional analysis was performed to determine if spatial
clustering of P-values occurred in a null map. Though a calculation of
an extensive permutation distribution was not feasible, we conducted
one permutation to get an idea of how the data on the top (most
significant) SNPs might look in a null distribution. The genomes, sex,
and agewere randomly swapped among subjects and the sameanalysis
as abovewas run again. The output from this analysis is shown in Fig. 5.

Genes and ESTs (expressed sequence tags) in close proximity to
significantSNPswere localized through theUCSCgenomebrowser (Kent
et al., 2002) (http://genome.ucsc.edu/) and are reported in Table 2.
Additionally, gene functions and known associations with disease were
reviewed using the gene ontology information from the Entrez Gene
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene) database.

Determination of statistical threshold

Selecting only the P-value for the most highly associated SNP at
each voxel does not give, in the null case, a usual uniform distribution
of P-values from which to calculate the corrected significance of the
findings. Because we are using only the minimum P-value from a set
of tests of each of the genetic markers, we must find the appropriate
type of null distribution to use in this situation. If n independent
random variables X1, X2, …, Xn are uniformly distributed on the unit
interval [0,1], the minimum of these variables follows the probability
density function (Ewens and Grant, 2001):

fmin xð Þ = n 1−xð Þn−1
:

The probability density function (PDF) derived above, fmin(x), is a
Beta distribution with parameters α=1 and β=n. At each voxel
then, the null distribution for the P-value of the most strongly
associated SNP across n independent genomic markers (theminimum
P-value) approximately follows a Beta(1, n) distribution.

It is well known, however, that not all genomic markers are
independent (Frazer et al., 2007). Genetic variation is often inherited
in contiguous segments of DNA, such that there tends to be correlation
between the inheritance of alleles at markers close to each other on
the same chromosome. This genetic correlation is called linkage
disequilibrium (LD), and, as a result, the effective number of
independent tests (Meff) conducted is less than the total number of
markers (M). By effective number of tests, we mean the number of
independent tests that would have to be conducted to lead to a null
distribution for the minimum P-values that was approximately the
same as that obtained when conducting tests that are necessarily
correlated due to LD.

To estimate the effective number of tests conducted as part of the
study, simpleM (https://dsgweb.wustl.edu/rgao/) was used (Gao et
al., 2008; Gao et al., 2010). This program first derives the composite LD
structure between SNPs, calculates eigenvalues through principal
component analysis on the composite LD matrix, and sets Meff equal
to the number of principal components required to jointly explain
99.5% of the variance in the SNPs. This process has been verified to
give Meff estimates similar to those derived from a gold-standard
permutation-based null distribution when applied to several com-
monly used SNP chips (Gao et al., 2010).

SimpleM requires that there must be no missing genotype
information. Therefore, it was necessary to perform imputation of
Please cite this article as: Stein, J.L., et al., Voxelwise genome-wide
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the genetic data prior to Meff analysis. Imputation was done using
Mach (version 1.0; http://www.sph.umich.edu/csg/abecasis/MaCH/
index.html) to infer the phase of the haplotype and automatically
impute missing genotypes (Li et al., 2009). The parameters of Mach
were set to 50 iterations of the Markov Sampler and 200 haplotypes
considered when updating each individual. Each chromosome was
imputed separately. Imputation was not conducted for sex chromo-
somes or for mitochondrial DNA. SimpleM was used on the imputed
dataset, and the resultingMeff estimates are presented in Table 1.Meff

was set to be equal toM for sex chromosomes andmitochondrial DNA
as the use of simpleM in this context has not been verified (Gao et al.,
2008; Gao et al., 2010).

The effective number of tests was estimated to be 275,575, which
is markedly reduced from the 448,293 markers directly measured in
this experiment. A comparable reduction was reported by (Gao et al.,
2010). We therefore chose to model the null distribution as Beta(1,
275575). Because the inter-SNP correlation depends on the number
and density of SNPs examined, this distribution would need to be re-
estimated for new types of genomic data, for instance if a chip with a
different density were used (e.g., 1 million SNPs). To determine how
well the analytic Beta distribution derived above fits the observed
data, a histogram of the observed distribution is compared to PDF of
the theoretical distribution in Fig. 1. Both distributions are compared
directly in a Q–Q plot. The theoretical distribution fits the observed
data well for the most part.

Based on the theoretical distribution of the minimum P-value from
all genetic markers, the P-values from the empirical studies were then
“corrected” through the cumulative distribution function (CDF) of the
derived beta distribution. By adjusting the data using the CDF of the
theoretical distribution, common corrections for multiple compar-
isons may be used on the “corrected” P-values (Pc-values). The False
association study (vGWAS), NeuroImage (2010), doi:10.1016/j.
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Fig. 1. The theoretical and observed distributions of the minimum P-value across
voxels. (a) The normalized histogram of the observed minimum P-values is shown.
Lines represent the PDF of the Beta(1, 275575) distribution (solid line) based on Meff

and the Beta(1, 448293) distribution (dashed line) based on the number of measured
markers. (b) The Q–Q plot shows the observed P-values plotted against those expected
from the Beta(1, 275575) (blue dots). The black line gives a purely null distribution. The
observed data matches well with that expected from the Meff based null distribution.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. A histogram and Q-Q plot for the “corrected” P-values (Pc-values). (a) The
histogram shows the Pc-values approximately follow a uniform distribution. (b) The Q–
Q plot shows the expected ordered −log10(Pc-values) as drawn from a uniform
distribution plotted against the observed ordered −log10(Pc-values) as blue dots. The
black line shows the null distribution. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

5J.L. Stein et al. / NeuroImage xxx (2010) xxx–xxx

ARTICLE IN PRESS
Discovery Rate (FDR) correction for multiple comparisons (Benjamini
andHochberg, 1995) is reliant on receiving data that has a null P-value
distribution that is uniform on the interval [0,1] (Dabney and Storey,
2006). Theminimum P-value distribution above clearly does not meet
that criterion, but the Pc-value data at least approximately does, as
shown in the histogram and Q-Q plot of the Pc-value distribution
(Fig. 2).

False discovery rate correction for multiple comparisons

Following correction of the raw P-values, an FDR correction for
multiple comparisons may be used to estimate if there is a statistical
Please cite this article as: Stein, J.L., et al., Voxelwise genome-wide
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threshold that can be applied to the maps that controls the expected
rate of false-positives at a nominal rate (usually 5%) among all rejected
hypotheses (Benjamini and Hochberg, 1995; Genovese et al., 2002).
The FDR method for multiple comparisons correction is especially
suitable for exploratory analyses like those presented here where we
search for genes affecting brain structure (Storey, 2003). Here we set
the FDR to q=0.05, so that, on average, 95% of voxels declared
significant are true positives. The maps show that our data can only be
thresholded at a level that gives a false discovery rate of roughly 50%,
and no statistical threshold controls the FDR at the conventional
q=0.05 level (Fig. 3).

The original FDR method (Benjamini and Hochberg, 1995)
assumes that the data for each test is statistically independent and
the P-values are sampled from a uniform [0,1] distribution (Dabney
association study (vGWAS), NeuroImage (2010), doi:10.1016/j.
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Fig. 3. The cumulative distribution function of corrected P-values. The cumulative
distribution function of Pc-values is shown (red) with two lines representing thresholds
of q=0.50 (blue), and q=0.05 (green). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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and Storey, 2006). The data are not statistically independent as the
genomic structure has linkage disequilibrium, or correlation between
markers, and the neuroimaging data also has spatial smoothness. If
the data have a “positive regression dependency”, i.e., the test
statistics of the regression are positively correlated, the Benjamini–
Hochberg procedure controls the FDR successfully (Benjamini and
Yekutieli, 2001). This is most likely a valid assumption for neuroima-
ging and genetic data (Genovese et al., 2002; Storey and Tibshirani,
2003).

The original FDR method (Benjamini and Hochberg, 1995) is the
most conservative of FDR methods in that it will always control the
Table 2
The top 20 most associated SNPs organized by minimum P-value at any voxel. The identifier
in each genotype group (homozygousmajor allele, Maj; heterozygous, Het; homozygousmin
to the total number of subjects (740) if data is missing for that SNP in some subjects. The volu
(mm3) column. Minimum P-value gives the raw P-value at the most associated voxel whe
all voxels where it is the winning SNP. Additionally, the gene or expressed sequence tag (EST)
or EST.

Chr Base Pair SNP MAF Number of subjects
in genotype groups

Vol

Maj Het Min

6q16.2 99778735 rs2132683 0.3257 340 318 82 422
6q15 91474473 rs713155 0.3966 274 345 121 729
1p35.1 34020651 rs476463 0.1203 567 168 5 147
7q31.32 121989829 rs2429582 0.3417 319 331 86 249
3p21.31 46314816 rs9990343 0.4811 197 374 169 204
11q23.3 115803577 rs490592 0.2149 450 255 29 145
20q13.12 43557937 rs11696501 0.1935 480 232 27 768
3p12.1 84563758 rs10511089 0.1095 589 140 11 166
8q23.1 108858992 rs4534106 0.3007 367 301 72 198
6q12 67705937 rs11970254 0.3464 293 358 72 102
9p13.1 38030095 rs7025303 0.4061 263 347 124 768
1p36.13 19441559 rs710865 0.3824 277 354 103 256
9p13.1 38031142 rs7873102 0.3821 283 340 109 832
20p12.1 12822585 rs2073233 0.4291 234 369 131 256
2q37.3 242151629 rs12479254 0.4049 255 341 119 140
16p12.1 24439219 rs11643520 0.1160 574 146 11 192
5p12 44222425 rs4296809 0.1448 539 177 17 127
13q32.2 97764318 rs688872 0.3804 283 345 106 339
14q22.1 51080549 rs7140150 0.4566 219 353 160 185
6p12.3 49596867 rs9473582 0.3973 274 339 121 441
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number of false-positives among rejected hypotheses at the specified q-
level, given independence of the data and sampling from a uniform
distribution when null. Given added assumptions, though, several
alternative FDR methods may be used to correct for multiple
comparisons, and can give less conservative estimates of significance
(Pounds, 2006). The positive False Discovery Rate (pFDR) is a
modification of FDR, conditioning on one false positive finding having
occurred (i.e., one null hypothesis being rejected) (Storey, 2003). The
pFDR method is implemented in the R statistics program (http://www.
r-project.org/; Version 2.8.1) as the “q-value” package (Version 1.20.0),
used here to calculate the q-values according to the pFDR method.

Several alternative methods have been proposed to correct
empirical data to fit the assumptions of the FDR method (Leek and
Storey, 2008), or to correct the FDR assumptions to fit the non-
independence of the data (Li and Ji, 2005).

Estimation of sample size needed for replication

To estimate how many subjects would be needed to replicate the
finding that these genetic variants are associated with brain structure
conditional on the dataset, we used a re-sampling approach. The most
associated voxel for each of the 5most significantly associated SNPs (see
Table 2) was used as an example phenotype. For each SNP, three
subjects, one from each diagnostic category (AD, MCI, and healthy
control), were randomly picked and removed from the analysis and the
P-value for each of the significant SNPs was calculated at the most
associated voxel. The process was repeated until no more subjects
remained in the diagnostic category with the least number of subjects
(165AD subjects). To estimate confidence intervals for this estimate, the
resampling was repeated 1000 times. 95% confidence intervals were
based on the 2.5th and 97.5th percentiles of the resampled distribution.

Results

Voxelwise GWAS results

Maps of the significance level at each voxel for the most
associated SNP within that voxel were recorded and displayed in
of each SNP is shown with its minor allele frequency (MAF), and the number of subjects
or allele, Min). Note that the number of subjects in each genotype groupmay not add up
me of all the voxels where this SNPwas themost associated SNP is shown in the Volume
re this SNP was a winner. Mean P-value gives the mean P-value of association across
within 50 kb is shown, where bold typeface indicates that the SNP is located in the gene

ume (mm3) Minimum P-value Mean P-value Gene or EST (±50 kb)

4 2.56×10−10 1.01×10−6

6 3.11×10−10 5.08×10−7

2 3.18×10−10 1.27×10−6 CSMD2
6 4.23×10−10 6.46×10−7 CADPS2
8 5.34×10−10 4.41×10−7

28 1.39×10−9 1.32×10−6

1.41×10−9 8.54×10−7 WFDC2, SPINT3
4 1.79×10−9 6.57×10−7

4 2.27×10−9 1.00×10−6 BG436399
4 2.29×10−9 6.21×10−7

2.30×10−9 1.21×10−6 SHB
2.65×10−9 1.10×10−7 KIAA0090, MRT04, AKR7L
2.96×10−9 6.42×10−7 SHB

0 3.17×10−9 1.42×10−6 BC036700
8 3.88×10−9 5.70×10−7 BOK, THAP4
0 4.39×10−9 6.06×10−7 RBBP6
36 4.41×10−9 8.75×10−7 BG334794
2 4.68×10−9 1.06×10−6 FARP1
6 5.78×10−9 4.77×10−7 FRMD6
6 5.98×10−9 8.25×10−7 GLYATL3

association study (vGWAS), NeuroImage (2010), doi:10.1016/j.
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Fig. 4. There are spatially contiguous hot spots of significant
association, with a “raw” minimum P-value of 2.56×10−10 (Pc-
value=7.05×10−5) across the entire brain. There is a certain
amount of spatial clustering because all voxels are not independent
so some spatial clustering is expected even if the null hypothesis
were true. To get an approximation of how much spatial clustering is
expected by chance, Fig. 5 shows the minimum P-values in each
voxel after the genomes have been randomly assigned to each
subject. A certain amount of clumping is expected when top SNP
maps are made from null data. One source of spatial coherence in
these maps is that they are based on smooth maps of volumetric
differences computed using tensor-based morphometry, which uses
nonlinear image registration of each subject's imaging data to a
template. These methods generate spatially smooth maps of volume
differences, where the level of smoothness is dependent on the form
of the regularizer (Laplacian, elastic, fluid, etc.) and also on the spatial
resolution of the numerical grid used to solve the differential
equations whose solution is the deformation field. In our approach,
the elastic regularizer is decomposed into its eigenfunctions so that
the warping fields can be computed using a Fast Fourier transform.
Because these deformation fields are smooth, so are averages and
Fig. 4. The significance of the most associated SNP at each voxel. Each image represents sli
represents anterior regions of the brain and the bottom represents posterior. The images are
colored by the –log10 of the P-value of the genetic association at each point (warmer colors
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differences of their Jacobian (gradient) maps, and so are the
resulting statistical maps. In the future, it may be interesting to see
if there is more latent structure or anatomical coherence in the top
SNP maps than would be otherwise expected if the data were
completely null. Even so, there may be relevant genes that influence
brain structure but are never the top SNP in a map of this kind. If so,
their effects might be more spatially distributed (coherent) with-
out ever being represented in a top SNP map. Given this, clearly
extensions of vGWAS might be proposed that emphasize the total
extent, or cluster size, as well as the peak height of the asso-
ciation P-values, a tactic that can be more powerful than a peak
height or maximum statistic (top SNP) test for detecting subtle
but distributed effects of weak effect size in statistical parametric
maps.

The voxelwise GWAS showed 8,212 unique SNPs which weremost
associated at each voxel. In other words, if the “winning SNP” was
picked for each voxel, the same SNP was picked over spatially
coherent regions. There does not appear to be a great deal of
hemispheric symmetry in the spatial distribution of the “winning”
SNP at each voxel (Fig. 6). However, the SNPs presented here do have
an effect on brain volume beyond the most highly associated voxels
ces through the brain at 8 mm intervals from inferior to superior. The top of the page
in radiological convention (left of the image is the right side of the subject). Each voxel is
are more strongly associated).

association study (vGWAS), NeuroImage (2010), doi:10.1016/j.
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Fig. 5. The significance of the most strongly associated SNP at each voxel in a single permuted dataset. Each image represents slices through the brain at 8 mm intervals from inferior
to superior. The top of the page represents anterior of the brain and the bottom of represents posterior. The images are in radiological convention (left of the image is the right side of
the subject). Each voxel is colored by the –log10 of the P-value of the genetic association at each point (warmer colors are more strongly associated). The same color scale is used from
Fig. 4 for comparisons.
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shown. The 20 “top” SNPs with the most significant association to any
voxel are shown in Table 2. The most significant SNPs were found in
several genes.

The twomost significantly associated SNPs in the study, rs2132683
and rs713155, are both found in intergenic regions of chromosome 6.
These SNPs are the “winning SNP” at voxels located in the white
matter near the left posterior lateral ventricle (rs2132683) and in the
cerebral aqueduct and fourth ventricle (rs713155; Fig. 6). The allele
frequency of the minor allele at rs2132683 has a trend level difference
between diagnostic groups (AD and MCI: 0.339; healthy elderly:
0.291; P=0.0793; OR=1.25) as does rs713155 (AD and MCI: 0.416;
healthy elderly: 0.347; P=0.016; OR=1.34).

SNP rs476463 is located within an intronic region of the CSMD2
gene. CSMD2 has highest expression in the brain and may be a
oligodendroglioma suppressor (Lau and Scholnick, 2003), though the
function of the protein is largely unstudied. Additionally, it has been
associated with ADHD (Lesch et al., 2008) and addiction (Liu et al.,
2006). The allele frequency of this SNP did not statistically differ
between diagnostic groups (AD and MCI: 0.116; healthy elderly:
0.131; P=0.428; OR=0.871).

SNP rs2429582 is located within an intronic region of the CADPS2
gene and is the SNP that associated with brain structure the most in
Please cite this article as: Stein, J.L., et al., Voxelwise genome-wide
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the lateral temporal lobe. This gene regulates synaptic and large dense
core vesicle priming in neurons, especially promoting monoamine
uptake and storage in neurons (Brunk et al., 2009). CADPS2 is strongly
expressed in the brain, specifically in cerebellum, cortex, olfactory bulb,
hippocampus, striatum, thalamus, and superior and inferior colliculi
(Speidel et al., 2003). The gene is located in an areawith known linkage
to autism (Cisternas et al., 2003). Splice variants of this gene may also
be relevant to autism (Sadakata et al., 2007), though there is some
controversy over this finding (Eran et al., 2009). The allele frequency
for this SNP had a trend level difference between diagnostic groups
(AD and MCI: 0.355; healthy elderly 0.307; P=0.084; OR=1.241).

The fifth most associated SNP in this analysis, rs9990343, is in an
intergenic region of the genome on chromosome 3. It is the “winning
SNP” in voxels of the superior frontal lobe (Fig. 6). The allele frequency
for this SNP did not statistically differ between diagnostic groups (AD
and MCI: 0.489; healthy elderly 0.461; P=0.341; OR=1.12).

Other genes of interest identified here are WFDC2, expressed in
epithelial cells and thought to be involved in ovarian cancers (Bingle
et al., 2002); SPINT3, serinepeptidase inhibitor, Kunitz type 3 (Lundwall,
2007); SHB, involved in apoptosis, signal transduction (Lindholm,
2002), cell differentiation, andmay interactwith other proteins to cause
neurite growth (Zhang et al., 2006); KIAA0090 which currently has an
association study (vGWAS), NeuroImage (2010), doi:10.1016/j.
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Fig. 6. The locations of association for the 5 most associated SNPs. Slices through theMDT are shown in regions where the indicated SNP is the most associated at the voxel (red). The
SNPs have effects on brain structure beyond the red colored voxels, but these voxels are associated with the labeled SNP more than any other. The slices through the MDT are every
4 mm and go from inferior (left of page) to superior (right of page). The images are in radiological convention (left of the image is the right side of the subject).
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unknown function; MRTO4 which may be involved in mRNA turnover
and ribosome assembly (Lo et al., 2009); AKR7L which is an aldo-keto
reductase (Mindnich and Penning, 2009); BOK which is in a family of
proteins that act as anti- and pro-apoptotic regulators (Bartholomeusz
et al., 2006); THAP4, which does not have a known function (Roussigne
Please cite this article as: Stein, J.L., et al., Voxelwise genome-wide
neuroimage.2010.02.032
et al., 2003); RBBP6, which encodes a retinoblastoma tumor suppressor
(Sakai et al., 1995); FARP1, which promotes dendritic growth (Zhuang
et al., 2009); FRMD6 andGLYATL3 have unknown function. Additionally,
SNPs were found in ESTs BG436399 and BC036700 (Strausberg et al.,
2002) and BG334794.
association study (vGWAS), NeuroImage (2010), doi:10.1016/j.
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Statistical threshold

The statistical threshold was calculated using two methods that
control the FDR on the Pc-values. The original FDRmethod (Benjamini
and Hochberg, 1995), which is valid in cases of positive regression
dependency (Benjamini and Yekutieli, 2001), sets a critical P-value
significance threshold for the second-most associated SNP
(rs713155), with a false discovery rate of q=0.50 (or ∼50%) when
the Pc-value threshold is 2.97×10−4 (Fig. 3). The pFDR threshold
gives a q-value of 0.25 for the most associated voxel of SNP
rs2132683.

Sample size needed for replication

Replication is crucial for any experiment, but especially so in
genomic studies that have a high chance for false-positive results
because so many tests are conducted. Here, we conducted a
resampling approach to determine how many subjects would be
needed to replicate our findings with 95% confidence (Fig. 7). This
resampling procedure shows that an independent sample of fewer
than 312 subjects for rs2132683, 263 subjects for rs713155, 291
subjects for rs476463, 299 subjects for rs2429582, and 319 subjects
for rs9990343 would be required to replicate the effects shown here
with 95% confidence in a new sample at a significance level of P b 0.01
Fig. 7. The minimum number of subjects needed to replicate the findings for the top 5 mos
removed from each of the diagnostic categories until none was left in a category, and the a
estimate 95% confidence intervals (red lines). The median P-value of the repetitions for eac
replication threshold for the first 5 SNPs, a Bonferroni corrected P-value of 0.01. The dotted
replication of the finding with 95% confidence (N=312 for rs2132683; N=263 for rs7
interpretation of the references to color in this figure legend, the reader is referred to the w
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(a nominal P b 0.05, Bonferroni corrected for five independent tests).
We note that the standard P b 0.05 level rather than the genome-
wide significance would be applicable to a replication sample, as a
prior hypothesis regarding the specific gene variant exists. In general,
it seems desirable for imaging genetics studies to estimate the sample
size needed to replicate a given finding, and to rank them for different
findings, so that promising leads can be followed with maximum
efficiency. In the imaging genetics community, it may also be possible
to facilitate data sharing through the ENIGMA (Thompson andMartin,
2010) network (http://enigma.loni.ucla.edu/) sufficient to replicate a
finding if the sample size required is known. The tables of “top SNPs”
may then be shared with useful estimates of the sample sizes needed
for replication.

Discussion

Methodological overview

Here we present a method to conduct a voxelwise genome-wide
association study (vGWAS). In summary: (1) we conducted a
genome-wide association analysis using volume differences relative
to a mean brain image template at each voxel as a phenotype, after
controlling statistically for age and sex; (2) we selected only the most
associated voxel, saving its P-value and identifier; (3) the effective
t associated SNPs was estimated with a resampling approach. Subjects were randomly
ssociation P-value of the SNP was calculated. This process was repeated 1000 times, to
h number of subjects removed is shown as the solid black line. The blue line shows the
blue line shows the estimated minimum sample size that would be required to detect a
13155; N=291 for rs476463; N=299 for rs2429582; N=319 for rs9990343). (For
eb version of this article.)
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number of tests was calculated through determination of the number
of principal components that describe 99.5% of the genotypic
variance; (4) the P-value was corrected across SNPs through a
transformation using the CDF of an analytic Beta distribution with the
parameter estimated by the effective number of tests; and (5) the Pc-
value maps were assessed for how they controlled the false discovery
rate, using various implementations of the FDR theory to correct for
multiple comparisons.

Overall, no SNPs survived FDR correction at the conventional
q=0.05 threshold, but several interesting genes were identified that
already have a known mechanistic relation to brain structure or to
specific diseases of the brain, making them worthy of attempting
replication.

Assumptions of model

This method defined above is equivalent to a “winner-take-all”
map for SNPs, where the most associated SNP is represented in each
voxel. Our method is losing information by only looking at one SNP
per voxel, but even this data reduction technique requires novel
analysis methods and extensive computational time. Other methods
have been proposed to assess the simultaneous effects of multiple
SNPs across multiple voxels, such as multivariate principal or
independent component analysis (Liu et al., 2009). In addition,
canonical correlation analysis (CCA) (Hotelling, 1935, 1936; Lee et al.,
submitted for publication), could be used to seek an optimal basis (or
linear combination) for two high-dimensional vectors (i.e., the images
and the SNP set), to maximize their correlation ormutual information.
This basis can then be used to determine the maximum correlations
between the two datasets, by diagonalizing the total covariance
matrix between the vectors (Fillard et al., 2005). CCA, and its
nonlinear variants such as kernel CCA and adaptive boosting, are
especially attractive as they could be used to find optimal image
projections thatmaximally correlate with subsets of genes. A region of
an image, with specific weights derived from CCA, could then become
a candidate phenotype of interest. This multivariate correlation
method has been adapted already to seek genetic influences on 6-
dimensional diffusion tensors in twins, without throwing away the
substantial information in the diffusion tensor by dimension reduc-
tion (Lee et al., submitted for publication). Even so, the extension of
these multivariate correlation methods to genome-wide data has not
been explored and would require a great deal of memory.

Both the Beta transformation and FDR correction for multiple
comparisons work under the assumption of independence (or
positive dependence in the case of FDR). This assumption of
independence is not precisely true for neuroimaging or genetic data.
Neuroimaging data has spatial smoothness due to both scan
acquisition and analysis parameters. The smoothness of the Jacobian
maps that are derived from TBM analysis is partially determined by
pre-specified registration parameters that affect the spatial covari-
ance (Green's function) in the 3D deformation vector fields that are
used to measure volumetric differences. These Green's functions can
be set adaptively, in principle, and can be considered equivalent to
spectral or neural network model of neuroanatomical variation that
may be estimated from the data rather than specified analytically
(Grenander and Miller, 1998; Fillard et al., 2005). Because of this,
some spatial autocorrelations (spatial coherences) in the maximum
SNP map are expected even when null (Fig. 5). Similarly, because
genetic variation is inherited in contiguous segments of DNA due to
recombination happening often in specific locations, there is a great
deal of correlation between genetic markers recorded here, which is
taken into account through calculation of Meff (Table 1).

A commonmethod to correct for multiple comparisons taking into
account non-independence of the data is to calculate exact P-values
by shuffling labels, in this case genetic variation and voxels, between
subjects. By doing this many times, a true null distribution is
Please cite this article as: Stein, J.L., et al., Voxelwise genome-wide
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developed which automatically accounts for the spatial and genetic
correlations in the sample. Unfortunately, with data sets this large it is
not computationally feasible to calculate a null distribution through
resampling in a reasonable amount of time. Each analysis takes 27 h to
complete even when parallelized across 300 computing nodes, so a
resampling with only 1000 permutations would take ∼3 years.

Permutation tests are the gold standard for calculating significance
levels and determining Meff. As mentioned above, permutation tests
are not computationally feasible here, so we used a quick and effective
method for determiningMeff. Using a measure of the effective number
of independent tests is controversial (Nichols and Hayasaka, 2003;
Dudbridge and Koeleman, 2004). Previous work has shown that when
calculating the effective number of tests conducted, the calculated
distribution was significantly different from a permutation-derived
distribution (Dudbridge and Koeleman, 2004). However, a different
algorithm is used here for determining the effective number of tests
(simpleM) and was found to match very well with the effective
number of independent tests fit to a Beta distribution of permuted
data in two datasets (Gao et al., 2010). Other work has shown that in
neuroimaging data, the effective number of independent tests does
not match that of a permuted dataset when there is high spatial
smoothness (local autocorrelation) in the residuals of the dataset after
statistical model fitting (Nichols and Hayasaka, 2003). However, here
we use the effective number of tests to correct across the genetic data,
an application where the procedure has been shown to give accurate
results in comparison to a gold-standard permuted null dataset (Gao
et al., 2010).

Validity of the beta distribution and effects of violations of distributional
assumptions

Serious consideration must be given to how violations of the
assumptions of the Beta transformation might affect the results of the
analyses. In fact, if null data deviates from a Beta distribution (e.g., in
the tails), it will impact some steps of the analysis (the FDR correction,
which is based on significance) but not others (the ranking of the SNPs
and the top SNP map). The goal of the Beta(1, Meff) method of
adjusting the raw P-values is “uniformization” of the Pc-values under
the null hypothesis. In other words, if the data are truly null, then the
Pc-values should approximately follow a uniform distribution on the
unit interval [0,1]. In Figs. 1 and 2, the Q–Q plots show the
approximate fit to the Beta(1, Meff) distribution in the bulk regime
(i.e. where the effect sizes are lowest), but in the tail, there may be
deviations from the fit. True positives would induce such deviations,
but an inappropriate fit could also do this. In simulations with
correlated Gaussian samples, a Beta(1, Meff) fit does well in the bulk,
but there are deviations from uniformity for small Pc-values (we
acknowledge an anonymous reviewer for noting this). Such devia-
tions will not affect the SNP ranking, as any conversion from P to Pc is
monotonic. However, they would affect the significance testing.
Although FDR applied to the images here did not give a significant
finding, so the point does not affect the conclusions drawn, if the P-to-
Pc is used as the basis for significance testing, its empirical fit should
be tested more thoroughly and perhaps modified based on a partially
permuted dataset, where feasible.

Methods to increase power in vGWAS

First, minimal N plots (Fig. 7) estimate, through a resampling
procedure, howmany subjects might be needed to replicate a finding.
These SNPs could be validated by conducting a similar experiment in a
new sample, looking at only the SNPs of interest at the voxels or
regions found here. By reducing the number of comparisons (fewer
voxels and fewer SNPs), a less stringent statistical threshold is needed
for comparison because fewer tests are conducted.
association study (vGWAS), NeuroImage (2010), doi:10.1016/j.
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This minimal N analysis differs from experiments which do not
reject the null hypothesis, and then attempt to determine the
experimental power to reject the null. The idea of a post-hoc power
calculation has been shown to be fallacious (Hoenig and Heisey, 2001;
Levine and Ensom, 2001) and is not the goal here. Instead we look to
estimate, approximately, the reduced number of subjects that might be
needed to replicate our results in a separate experiment. Using an initial
sample to determine the number of subjects needed to replicate a
finding in a completely independent sample does not have the same
fallacy of the post-hoc power calculation which attempts to calculate
the power to achieve significance on the same sample. The goal of the
analysis presented is to determine how many subjects are needed to
pass a lower replication significance threshold. If the finding is true, and
if the sample here is representative of the population, 95% of the time in
new experiments the SNP will be significant at a replication threshold.

Notably, because vGWAS does lead to restricted regions of interest
for associations, future studies could take advantage of the limited
search region to specify a region of interest, increasing power by
eliminating false-positive voxels. The selection of statistically-defined
regions of interest has been useful in other large voxel-based
morphometry studies. For example, in a study of 515 ADNI subjects
scanned twice, Hua et al. (2009) found that the sample sizes needed to
find drug effects on the rates of brain atrophywere drastically reduced
if the analysis focused on voxels that had shown strong effect sizes in a
small independent training sample. Summary measures from this
statistical region of interest were more powerful than those based on
atlas-based anatomic criteria, suggesting the benefit of voxel-based
methods, at least in some cases, over anatomical parcellation.

To implement such an approach, one could use two datasets: one for
training and one for testing. The training dataset could be used to
specify areas of greatest heritability or areas of greatest genetic
association. These areas could then be used as “training” ROIs to search
for genetic influence. Using vGWAS, the most associated SNPs at the
most associated voxels could be used as “testing” ROIs where wewould
expect much higher power in the “testing” dataset, as fewer voxels and
fewer SNPs are tested for association. The ADNI study has used this
method successfully to increase power to detect changes with greatest
statistical effect sizes in AD (Hua et al., 2009; Ho et al., in press).
Genetics studies have also advocated this multi-stage approach to
maximize power with reduced genotyping cost (Skol et al., 2006).

Additionally, machine learning algorithms such as support vector
machines (Burges, 1998) or Adaboost (Freund and Schapire, 1997;
Morra et al., 2008) could offer a method to identify the most powerful
phenotype, that is a set of voxels, and an associated set of weights, with
the greatest power to associate with genetic variation. A linear version
of this approach is canonical correlation analysis; a nonlinear version
might use machine learning methods such as kernel CCA, support
vector machines, or boosting (Morra et al., 2009). If the performance of
this system were high on new data, one could use the new classifier
output as the endophenotype (Sun et al., 2009) and regress it against
genetic variation using standard association software, such as Plink.

Conversely, machine learning methods could be used to find gene
sets or networks that best predict the image value (Gu et al., 2009). In
this way, one would be directly building a genetic model for the data.
The gene set could be limited to the best candidates from the training/
screening phase of the data as detailed above. This could motivate a
design where one de-trends the effects of the top SNPs when looking
for others. Adaptive boosting could be applied to this problem, as it
could fit a powerful weightedmodel ranking the top SNPs even if they
each had a small effect (similar to “weak learners”, in terminology of
machine learning) (Morra et al., 2009).

Biological significance of the findings

Genome-wide association using brain phenotypes in humans has
only been started in a few previous studies, to our knowledge
Please cite this article as: Stein, J.L., et al., Voxelwise genome-wide
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(Seshadri et al., 2007; Potkin et al., 2009a; Potkin et al., 2009b). These
studies used data reduction techniques by only studying gross
phenotypes of interest like total cranial, lobar, ventricular, or
hippocampal volumes. Our analysis offers a conceptual advantage as
it searches for voxelwise genetic associations in 3D, which should
offer much greater anatomical detail about genomic association, with
potentially higher statistical power. Using this method, we found
several genes with high relevance to brain structure. Specifically,
CADPS2 is involved with monoamine uptake in neurons; CSMD2 and
CADPS2 have been associated with psychiatric illness; and SHB and
FARP1 are associated with neurite growth. Given this prior informa-
tion on how these genes function on the brain, it is likely that some of
the genetic variants found here have important effects on the
structure of the brain. Many other genes have not been well-studied
or characterized so may well have an effect on brain structure.

In Fig. 6, many of the locations of greatest association beyond any
other SNP for the 5 most associated SNPs are near a significant edge
in the brain—next to the brain surface, major fissure, or ventricles. It
is worth considering whether such a localization may be due to a
bias (differential sensitivity) that might arise from the method of
image warping followed by using the warp's Jacobian determinant as
the dependent variable. If statistical maps based on deformation
fields tended to detect effects more frequently at edges than in the
rest of the brain, then this would be a possible source of bias, but it
appears not to be the case in other empirical studies using TBM (in
fact the opposite tends to be the case). Most studies with
deformation morphometry tend to show the greatest effect sizes
throughout large homogeneous regions, and notably our TBM studies
of Alzheimer's disease find greatest effects in broad regions of the
brain's white matter, or throughout the lateral ventricles, both at
1.5 T and 3 T, and in large samples (Hua et al., 2009; Ho et al., in
press). Also, statistical effects are not preferentially detected at edges
in images when the effects of single candidate genes on the brain are
assessed with TBM (Ho et al., submitted for publication). Although
the deformation is driven by a body force (image gradient, or
variational derivative of a cost function) that is generally greatest at
the edges of structures in the images, the interiors of structures still
tend to be better registered than their boundaries once all the data
are aligned. In the interiors of structures, coherent patterns (such as
atrophy) are more likely to be reinforced across all members of a
group than at boundary voxels that may be less well registered
across all subjects in the group, even after nonlinear registration.
After all, the registration algorithm focuses on improving the
alignment of edges as they are always the least well registered
parts of the image, and therefore these regions are likely to show low
effect sizes in a population study. Even so, some warping methods
use regularizers that are designed to make the Jacobian determinant
as uniform as possible in regions of homogeneous image intensity
(e.g., the sKL-MI method, see Yanovsky et al., (2009)), so the
Jacobian determinant will change the most at an image edge. If this is
true, and if the “top SNP” is a different SNP for different structures,
then it is more likely that the top SNP in a vGWAS map will change at
the boundary of a structure. This is speculative, and the spatial
coherence of top-SNP maps may depend on the sample size, the true
spatial correlation in the “top SNP” maps in an arbitrarily large
sample, as well as the methods (maximum statistic vs. cluster size
statistic) used to detect them. The spatial correlation for single gene
effects on brain structure can be quite large, in TBM studies of
candidate genes that influence brain structure (Ho et al., submitted
for publication).

As in other ADNI analyses, we did not covary for medication status
of the subjects. It cannot be absolutely ruled out that some of the
volumetric brain differences between AD, MCI, and normal subjects
might arise due to differences in medications, but such effects are
likely minimal. The major treatments for AD, including acetylcholin-
esterase inhibitors (AChE-I) and NMDA receptor modulators, have
association study (vGWAS), NeuroImage (2010), doi:10.1016/j.
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effects at the synaptic (neurotransmitter) level that can provide
limited symptomatic relief and have not been found to resist the
progression of atrophy, despite many efforts to find such effects. In
their ADNI study of 269 MCI subjects, Kovacevic et al. (2009) noted
that 45% of the MCI subjects were being treated with AchE-Is, but
controlling for treatment status in prediction of decline did not
change the association between medial temporal lobe volumes on
MRI and cognitive decline, nor did treatment status affect regional
volumes. In addition, some psychiatric medications do have direct
effects on brain structure that are not attributable to the illness itself,
and these include lithium, a treatment for bipolar disorder (Bearden
et al., 2007; Bearden et al., 2008), and the antipsychotics haloperidol
or olanzapine (Thompson et al., 2009). However, ADNI's exclusion
criteria required subjects to be free from major depression, bipolar
disorder, or any history of schizophrenia.

Conclusion

In summary, here we presented a novel method for discovering
genetic variations associated with brain structure. The resulting
method, termed vGWAS, is capable of integrating a large amount of
biological information, yet still allows sufficient power to detect
significant variants. This method will be useful in any brain maps that
have coordinate systems, such as voxel-based morphometry, cortical
surface data, and parameterized tracts derived from diffusion tensor
imaging. In addition, we have provided a ranked list of new candidate
genes with potential effects on brain structure that are worthy of
further study.
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