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Alzheimer’s disease (AD) is a complex disease that is likely

influenced by many genetic and environmental factors. Citing

evidence that iron may play a role in AD pathology, Robson et al.

[Robson et al.(2004); J Med Genet 41:261–265] reported that

epistatic interaction between rs1049296 (P589S) in the transfer-

rin gene (TF) and rs1800562 (C282Y) in the hemochromatosis

gene (HFE) results in significant association with risk for AD. In

this study we attempted to replicate their findings in a total of

1,166 cases and 1,404 controls from three European and Euro-

pean American populations. Allele and genotype frequencies

were consistent across the three populations. Using synergy

factor analysis (SFA) and Logistic Regression analysis we tested

each population and the combined sample for interactions

between these two SNPs and risk for AD. We observed significant

association between bi-carriers of the minor alleles of rs1049296

and rs1800562 in the combined sample using SFA (P¼ 0.0016,

synergy factor¼ 2.71) and adjusted SFA adjusting for age and

presence of the APOE epsilon 4 allele (P¼ 0.002, OR¼ 2.4).

These results validate those of the previous report and support

the hypothesis that iron transport and regulation play a role in

AD pathology. � 2009 Wiley-Liss, Inc.
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Alzheimer’s disease (AD) is a complex disease that is likely

influenced by many genetic and environmental factors. Recent

studies using meta-analyses and genome-wide association studies

(GWAS) have provided increasing evidence for new genetic risk

factors [Coon et al., 2007; Bertram et al., 2008; Li et al., 2008;

Beecham et al., 2009; Carrasquillo et al., 2009; Feulner et al., 2009;

Harold et al., 2009; Lambert et al., 2009]. Evidence from AlzGene

(alzgene.org) meta-analyses provides support for several risk

variants with small effect sizes [Bertram et al., 2007]. Two recent

studies investigated 29 such variants from the Alzgene meta-ana-

lyses for association in a large family-based sample [Schjeide et al.,

2009] and in samples in which cerebrospinal fluid (CSF) bio-

markers have been measured including amyloid-beta (Ab) levels
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[Kauwe et al., 2009]. Among the consistent findings, one SNP in TF,

rs1049296 that results in a missense coding polymorphism (P589S),

showed significant association in both studies [Kauwe et al., 2009;

Schjeide et al., 2009]. Like many other genetic associations, results

from various studies with rs1049296 have yielded both positive [van

Rensburg et al., 1993; Namekata et al., 1997; Van Landeghem et al.,

1998; Zambenedetti et al., 2003; Robson et al., 2004; Schjeide et al.,

2009] and negative results [Emahazion et al., 2001; Kim et al., 2001;

Hussain et al., 2002; Lleo et al., 2002; Rondeau et al., 2006; Blazquez

et al., 2007; Reiman et al., 2007]. Such inconsistency may indicate

that the association is spurious, or that the studies lack statistical

power [Bertram and Tanzi, 2004]. It has also been suggested that

lack of replication in genetic association studies is not surprising

given the extent of genetic and environmental heterogeneity

[Gorroochurn et al., 2007] and may even be a ‘‘signature of

epistasis’’ [Wade, 2001; Moore and Williams, 2005]. Evidence for

epistatic interaction between APOE e4 and genetic variation in

BACE has been consistently replicated, though the nature of the

interaction has yet to be characterized [Combarros et al., 2008]. It

has also been reported that a synergy between rs1049296 and

rs1800562 in the hemochromatosis gene (HFE) has strong associa-

tion with risk for AD, with individuals that carry the minor allele at

both loci having fivefold greater risk for disease using both synergy

factor analysis (SFA) and logistic regression [Robson et al., 2004].

Both of these variants are amino acid substitutions (rs1049296 is

P589S; rs1800562 is C282Y). In this study we attempt to replicate

the report of epistasis between rs1049296 and rs1800562 and

association with risk for LOAD in a total of 1,166 cases and

1,404 controls from three European and European American

samples.

The case–control series for this study were collected at three

different sites. Basic sample characteristics for each series are shown

in Table I. The Washington University (WU) case–control series

used in this study was collected through the WU Alzheimer’s

Disease Research Center (ADRC) patient registry. Cases in this

series received a diagnosis of dementia of the Alzheimer’s

type (DAT), using criteria equivalent to the National Institute

of Neurological and Communication Disorders and Stroke-

Alzheimer’s Disease and Related Disorders Association, modified

slightly to include AD as a diagnosis for individuals aged >90 years

[McKhann et al., 1984; Berg et al., 1998]. A total of 331 unrelated

DAT cases with a minimum age at onset (AAO) of 60 years were

recruited for the study. DNA from 385 age- and sex-matched non-

demented controls aged >60 years at assessment were obtained

through the ADRC.

We also used clinical data and DNA samples from 631 individuals

with late-onset AD and 769 control subjects ascertained from both

community and hospital settings in the UK collected as part of the

Medical Research Council genetic resource for late-onset AD

(MRC Sample). A detailed description of the ascertainment and

assessment of this sample has been reported elsewhere [Morgan

et al., 2007].

Data from 199 AD cases and 188 controls from the Alzheimer’s

disease neuroimaging initiative (ADNI) were used. Data used in the

preparation of this article were obtained from the ADNI database

on May 15, 2008 (www.loni.ucla.edu\ADNI). The Principle Inves-

tigator of this initiative is Michael W. Weiner, M.D., VA Medical

Center and University of California—San Francisco. ADNI is the

result of efforts of many co-investigators from a broad range of

academic institutions and private corporations, and subjects have

been recruited from over 50 sites across the U.S. and Canada. The

initial goal of ADNI was to recruit 800 adults, ages 55–90, to

participate in the research—approximately 200 cognitively normal

older individuals to be followed for 3 years, 400 people with MCI to

be followed for 3 years, and 200 people with early AD to be followed

for ‘‘2 years.’’ For up-to-date information see www.adni-info.org.

Finally, genotype counts from Robson et al. [2004] were used in our

meta-analysis.

Rs1049296 and rs1800562 were genotyped using Sequenom

genotyping technology. Single SNP allelic associations were

evaluated using Fisher’s exact test and genotypic associations were

evaluated with logistic regression using the additive, dominant, and

recessive models. SFA and adjusted SFA were used to evaluate the

size and significance of the effect of interaction between rs1049296

and rs1800562 and risk for AD with minor allele non-carriers as the

reference group [Lehmann et al., 2001; Robson et al., 2004; Com-

barros et al., 2008; Cortina-Borja et al., 2009].

Neither rs1049296 nor rs1800562 showed association with risk

for AD in single SNP tests using the additive model (Table II).

Analyses using the recessive and dominant genetic models and

models using APOE e4 as a covariate also failed to detect association

in the single SNP tests. Allele and genotype frequencies appeared

consistent between males and females. SFA in the WU series

was significant with a P-value of 0.0032 and a synergy factor of

5.99 (95% Confidence Interval (CI): 1.82–19.69) for bi-carriers

using non-carriers as the reference. SFA in the MRC and ADNI

samples was not significant (Table III) but showed trends in the

same direction. A large number of samples from the WU and MRC

were recently included in a genome-wide association study. Exten-

sive analyses using Eigenstrat [Price et al., 2006] showed no evi-

dence of population stratification between these two samples

[Harold et al., 2009]. Allele and genotype frequencies for each SNP

were very similar between the three samples (Table II). A combined

analysis of our samples shows significant association with SFA

unadjusted for covariates and adjusted SFA including site, gender,

TABLE I. Sample Characteristics

N Age % Female % e4 pos
WU

Cases 331 76.6 0.62 53.6
Controls 385 77.7 0.61 23.2

MRC
Cases 631 75.7 0.73 62.2
Controls 769 76.1 0.62 23.4

ADNI
Cases 199 71.8 0.56 65.0
Controls 188 77.7 0.55 27.8

The number of individuals, age (mean age at onset for cases, mean age at last assessment for
controls), percent of the sample that is female (%female), and percent of the sample that carries
the APOE e4 allele (% e4 pos) is shown for the Washington University (WU), Medical Research
Council (MRC), and Alzheimer’s disease Neuroimaging Initiative (ADNI) series.
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age, and APOE e4 as covariates (Table III). SFA unadjusted for

covariates using our three samples and data from the initial

report [Robson et al., 2004], is also significant (P¼ 5.15� 10�3,

OR¼ 2.72; Table III).

Our findings in the WU series and the combined sample support

the previous observation of synergy between rs1049296 and

rs1800562 as risk factors for AD. While there were differences in

the level of association in the individual samples (possibly due to

differences in the sample populations and genetic or clinical

heterogeneity; Table III) the unadjusted SF in our combined sample

for individuals that carry at least one minor allele at each locus is

2.71 (CI: 1.46–5.05) and the adjusted SF including age and APOE e4

as covariates was 2.4 (CI: 1.38–3.94). This is lower than the SF of

5.1 from the original report but still indicates a higher level of risk

for the bi-carriers of these alleles. Individuals that carry the minor

allele at only one of these loci do not show significantly increased

risk for AD (Table II). In this study bi-carriers make up about 4% of

the AD sample. It has been proposed that these individuals may be at

higher risk of AD due to increased redox-active iron and oxidative

stress [Robson et al., 2004; Lehmann et al., 2006]. Rs1800562 in

HFE is known to cause iron-overload and hemochromatosis in

individuals homozygous for the allele (OMIM-235200). Wild-type

HFE binds transferrin receptor 1 (TfR1). HFE with the minor

allele ‘‘A’’ of rs1800562 has much lower affinity for TfR1, leaving the

receptor free to bind TF with high affinity [Feder et al., 1998]. This

may result in increased uptake of TF bound iron, causing over-

absorption of dietary iron and iron deposition in various tissues

[Townsend and Drakesmith, 2002]. Wild-type TF is important for

iron transport and may be involved in limiting the amyloid

aggregation process [Giunta et al., 2004]. While rs1049296 does

not appear to affect the ability of TF to bind iron [Zatta et al., 2005],

the minor allele ‘‘T’’ shows significant association with increased

Ab42/Ab40 ratio in the CSF [Kauwe et al., 2009]. Our current

knowledge of rs1049296 and rs1800562 implicate both effects on Ab
and iron-overload as possible mechanisms for AD risk. In summary

our findings provide support for previous reports of synergy

between rs1049296 and rs1800562 as risk variants for AD and

support for the hypothesis that iron transport and regulation play

a role in AD pathology.
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