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Tumor necrosis factor (TNF), a proinflam-
matory cytokine, may be involved in the
pathogenesis of Alzheimer disease (AD)
based on observations that senile plaques
have been found to upregulate proinflam-
matory cytokines. Additionally, nonsteroi-
dal anti-inflammatory drugs have been
found to delay and prevent the onset of AD.
A collaborative genome-wide scan for AD
genes in 266 late-onset families implicated a
20 centimorgan region at chromosome
6p21.3 that includes the TNF gene. Three
TNF polymorphisms, a −308 TNF promoter
polymorphism, whose TNF2 allele is associ-
ated with autoimmune inflammatory dis-
eases and strong transcriptional activity,
the −238 TNF promoter polymorphism, and
the microsatellite TNFa, whose 2 allele is as-
sociated with a high TNF secretion, were

typed in 145 families consisting of 562 af-
fected and unaffected siblings. These poly-
morphisms formed a haplotype, 2-1-2, re-
spectively, that was significantly associated
with AD (P = 0.005) using the sibling disequi-
librium test. Singly, the TNFa2 allele was
also significantly associated (P = 0.04) with
AD in these 145 families. This TNF associa-
tion with AD lends further support for an
inflammatory process in the pathogenesis of
AD. Am. J. Med. Genet. (Neuropsychiatr.
Genet.) 96:823–830, 2000. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

The genetic complexity of Alzheimer disease (AD)
and its major expense to society led to the 1990 funding
of the National Institutes of Mental Health (NIMH) AD
Genetics Initiative. Phase I supported the identifica-
tion and collection of predominantly late-onset families
with AD affected siblings from three sites, the Univer-
sity of Alabama at Birmingham (UAB), Johns Hopkins
University (JHU), and Massachusetts General Hospi-
tal (MGH). A collaborative genomic screen was per-
formed in Phase II. This work led to the identification
of an apparent AD associated deletion in the alpha-2-
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macroglobulin (A2M) gene on chromosome 12 [Blacker
et al., 1998] and the detection of a putative AD associ-
ated region at chromosome 6p21.3 [Collins et al., 1996;
Go et al., 1998].

Within this 6p21.3 region is the major histocompat-
ibility complex (MHC) and human leukocyte antigen
(HLA) loci. In 1984, Renvoize reported a weak associa-
tion between AD and the A2 allele of the HLA-A locus,
which was confirmed by Payami et al. [1991]. In 1997,
Payami et al. followed this up by reporting that the
HLA-A2 allele was associated with a reduced mean age
of onset for AD, with a possible additive effect by the
apolipoprotein E (APOE) «4 allele, which was con-
firmed by Combarros et al. [1998] and Ballerini et al.
[1999].

A candidate gene in this 20 centimorgan (cM) region
at 6p21.3 is tumor necrosis factor (TNF, a.k.a. TNFa),
which produces a proinflammatory cytokine that helps
initiate and regulate cytokine production [Calder,
1997]. TNF increases the production of amyloid b (Ab)
and inhibits the secretion of amyloid precursor protein
[Blasko et al., 1999]. However, conflicting results re-
garding levels of TNF in AD patients have been re-
ported [Alvarez et al., 1996; Lanzrein et al., 1998;
Bruunsgaard et al., 1999; Lombardi et al., 1999;
Tarkowski et al., 1999]. AD patients have been found to
have more TNF receptors than controls, which may
indicate systemic immune activation [Bongioanni et
al., 1997]. TNF’s involvement in inflammation and its
effect on Ab make it an appropriate AD candidate gene.

The TNF −308 and TNF −238 promoter region poly-
morphisms [Vinasco et al., 1997] and the microsatellite
polymorphism TNFa [Martin et al., 1995], located ap-
proximately seven kb upstream of TNF, allowed us to
test for AD associations in this dataset using family-
based association tests. Reported here are the results
of the chromosome 6 genomic screen that initially iden-
tified the 6p21.3 candidate region and the results of
sibling association testing that identified a TNF poly-
morphism haplotype significantly associated with late-
onset AD.

MATERIALS AND METHODS

During Phase I of the NIMH AD Genetics Initiative,
470 AD relative pair families were identified and col-
lected at three clinical sites, UAB, JHU, and MGH.

Blood was collected, lymphocytes transformed, and
DNA extracted from these cell lines. The Institutional
Review Boards of each site approved the human sub-
ject research.

In Phase II, UAB typed highly polymorphic micro-
satellite markers spaced approximately 10 cM apart on
chromosomes 1, 6, 14, and 16 (Weber set, ver. 5.0).
These and additional flanking markers were used to
genotype 266 families that had at least two affected
siblings and DNA available. Eighty-four of these fami-
lies had at least one affected sibling with an APOE
«4/«4 genotype. The results from the chromosome 6
scan are presented in Figure 1 and Table I.

All microsatellite primers were synthesized in our
laboratory (Oligo 1000 DNA synthesizer; Beckman In-
struments, Fullerton, CA) or made by Research Genet-
ics (Huntsville, AL). Ten picomoles of the 58 primer
were end-labeled with one microcurie of (g-32P) ATP
(NEN/Dupont, Boston, MA) using one-half unit poly-
nucleotide kinase (Boehringer-Mannheim, Indianapo-
lis, IN) [Maniatis et al., 1989]. Using a 96-well microti-
ter plate format, PCR was performed in 25 ml reaction
volumes containing 100 ng of genomic DNA, 10 pico-
moles of labeled and nonlabeled primer, and one-half
unit of Taq polymerase (Promega, Madison, WI). Am-
plification was performed in an MJ thermocycler (MJ
Research, Watertown, MA) at an initial denaturation
of 95°C for three min, followed by 35 cycles of 95°C for
40 sec and 55°C for 30 sec. For some primers it was
necessary to add DMSO or to adjust the annealing tem-
perature to optimize amplification. After PCR, the
products were denatured at 95°C for 3 min and then
2–10 ml of product were size fractionated by denaturing
acrylamide gel electrophoresis (6%) followed by auto-
radiography.

Two independent readers recorded the genotypes
and retyped any discrepancies until resolved. The
genotypes were entered into the database, LABMAN
[Adams, 1994], and checked by two separate individu-
als. Samples exhibiting mendelization errors or miss-
ing typings were repeated. If a sample continued to
have mendelization errors it was set blank for that
marker. Individuals with mendelization errors over
several markers were dropped from the dataset.

One hundred forty-five families with DNA available
for at least one affected and one unaffected sibling were

Fig. 1. Graph of the chromo-
some 6 results for the APOE «4/«4
subset.

824 Collins et al.



typed for the TNFa microsatellite, the TNF gene poly-
morphisms at positions -308 and -238 of the promoter
region, and the A2 allele of the HLA-A gene. Primers
for the TNF promoter polymorphisms and HLA-A2
were purchased from Genosys (The Woodlawns, TX).
Genotyping of the TNF promoter polymorphisms fol-
lowed the protocol of Vinasco et al. [1997], except the
a2 and a4 PCR primers required 2.5 mM MgCl2 and an
annealing temperature of 55°C. The products were di-
gested with two units of enzyme overnight and electro-
phoresed on a 3% agarose gel. HLA-A2 was amplified
using PCR with sequence-specific primers following
the method of the Twelfth International Histocompat-
ibility Workshop [1996]. These products were run on
2% agarose gels.

Nonparametric analyses of marker data from these
families were performed using the single-point
SIBPAL (S.A.G.E., Case Western Reserve University,
Cleveland, OH) and multipoint GENEHUNTER [Krug-
lyak et al., 1996] programs. A SIBPAL P-value of less
than 0.05 and a GENEHUNTER NPL score with P-
value of 0.10 or less was considered a positive finding
for follow-up testing using flanking markers.
FASTLINK was used to perform parametric maximum
likelihood lod score two-point linkage analysis under a
dominant model with a 2% gene frequency and 80%
penetrance [Cottingham et al., 1993]. A lod score of 1 or
above indicated a region for further refinement.

The TNF promoter polymorphisms and TNFa micro-
satellite were combined to form a haplotype for the
TNF region. The most likely parental haplotypes were
reconstructed using the GENEHUNTER program
[Kruglyak et al., 1996]. Each family’s reconstructed
haplotypes were then individually inspected to verify
their accuracy. If no haplotype assignment could be
made for an individual he or she was dropped from the
analysis.

After the AD age of onset distributions were evalu-
ated for normality using the Shapiro-Wilk test, mean
ages of onset were compared between affected patients
with the HLA-A2 allele and affected patients without
the HLA-A2 allele using the two-sample t-test. This

test was also used to compare affected patients that
carried the TNF 2-1-2 haplotype to those that did not
carry this haplotype. These analyses were performed
using SAS Release 6.12 (SAS, Cary, NC).

Association and linkage analyses of AD with the
TNF polymorphisms and haplotypes were performed
by three family-based association tests that do not re-
quire parental genotypes. The SIBASSOC [Curtis,
1997] program performs a x2 test using the most geno-
typically distinct unaffected sibling as a control for
each case. This produces positive results only if the
marker is associated with and linked to the disease
locus, and is similar to the transmission/disequilibrium
test (TDT) proposed by Spielman et al. [1993]. The S-
TDT [Spielman and Ewens, 1998], which uses marker
information from unaffected siblings, was used to test
for linkage in sibships containing at least one affected
and one unaffected sibling. The final test, the sibship
disequilibrium test (SDT), compares alleles of all af-
fected and unaffected siblings in a sibship [Horvath
and Laird, 1998] and is a test for linkage as well as
linkage disequilibrium.

RESULTS
Initial linkage analyses indicated a 20 cM AD candi-

date region at 6p21.3 [Collins et al., 1996] in the entire
dataset of 266 families (D6S1051 SIBPAL P 4 0.02;
Table I) and the APOE «4/«4 subset of 84 families (Fig.
1; D6S1051 GENEHUNTER NPL score 41.3 (P 4
0.10); multipoint results not shown). Subsequently,
flanking markers TNFa and 9N3 both produced
GENEHUNTER multipoint NPL scores of 2.3 (P 4
0.01) and SIBPAL P 4 0.01 in the APOE «4/«4 subset
[Go et al., 1998; Table I].

The HLA-A2 phenotype was typed in the 145 fami-
lies and the ages at onset were squared to achieve nor-
mality. Age of onset was not significantly lower (P 4
0.12) in 164 affected siblings with the HLA-A2 allele
(mean 4 68.8 years) as compared to 145 affected sib-
lings without the HLA-A2 allele (mean 4 70.4 years).
The HLA-A2 allele was not found to be associated with
AD using family-based association testing.

TABLE I. Results From the 6p21.3 Region in the Total and APOE «4/«4 Datasets

UAB
Marker Distance

Stratum
(# fams)

SIBPAL GENEHUNTER FASTLINK

Mean
P-

value
NPL
score

P-
value

Lod
score Theta

D6S105 43 cM TOTAL (266) 0.54 0.07 −0.349 0.64 −0.02 0.45
D6S105 43 cM «4/«4 (84) 0.53 0.11 1.012 0.16 0.23 0.20
D6SMIB* 45.7 cM TOTAL (266) 0.52 0.06 0.777 0.22 0.05 0.35
D6SMIB* 45.7 cM «4/«4 (84) 0.55 0.02 2.225 0.01 0.50 0.15
D6STNFA* 45.8 cM TOTAL (266) 0.53 0.02 0.886 0.19 0.13 0.30
D6STNFA* 45.8 cM «4/«4 (84) 0.56 0.01 2.301 0.01 0.51 0.15
D6S9N3* 46 cM TOTAL (266) 0.52 0.06 0.959 0.17 0.06 0.35
D6S9N3* 46 cM «4/«4 (84) 0.56 0.01 2.311 0.01 0.87 0.10
D6S1051 48 cM TOTAL (266) 0.54 0.02 1.051 0.15 0.16 0.30
D6S1051 48 cM «4/«4 (84) 0.53 0.09 1.610 0.05 0.57 0.10
D6S943 51 cM TOTAL (266) 0.53 0.14 1.185 0.12 0.04 0.35
D6S943 51 cM «4/«4 (84) 0.50 0.46 1.610 0.05 0.00 0.40
D6S1017* 56 cM TOTAL (266) 0.52 0.07 1.172 0.12 0.14 0.30
D6S1017* 56 cM «4/«4 (84) 0.55 0.01 1.936 0.03 0.62 0.10
D6S271 65 cM TOTAL (266) 0.51 0.39 −0.049 0.52 0.01 0.40
D6S271 65 cM «4/«4 (84) 0.53 0.10 1.268 0.10 0.31 0.20

*Indicates flanking marker.
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The TNF promoter polymorphisms were typed in the
145 families (151 sibships) containing 311 affected
(69% female; mean age of onset 69.4 years) and 251
unaffected (64% female; mean age at follow-up 72.5
years) siblings. There were no significant differences
found when comparing allele frequencies between af-
fected and unaffected siblings (data not shown). Due to
the low heterozygosity of these polymorphisms, they
were combined with the previously typed microsatel-
lite, TNFa, to create a haplotype in the order of TNF
-308, TNF -238, and TNFa. The 2-1-2 haplotype was
found to be significantly associated with AD using the
SIBASSOC (P 4 0.005), S-TDT (P 4 0.02), and SDT (P
4 0.005) analysis programs. There was also a signifi-
cant association (P 4 0.04) between the TNFa 2 allele
and AD using the SIBASSOC program. These results
are all shown in Table II. Age of onset was not signifi-
cantly lower (P 4 0.32) in the 51 affected siblings with
the TNF 2-1-2 haplotype (mean 4 68.0 years) as com-
pared to the 243 affected siblings without the TNF
2-1-2 haplotype (mean 4 69.5 years).

DISCUSSION

The TNF −308 promoter polymorphism TNF2 (G→A)
allele, part of the AD-associated haplotype, has been
shown to have an increased frequency in autoimmune
and inflammatory diseases [Wilson et al., 1995] and is
associated with stronger transcriptional activation
than the TNF1 allele [Wilson et al., 1997]. The TNFA
allele of the −238 TNF promoter polymorphism has no
effect on TNF production [Pociot et al., 1995] and our
associated haplotype includes the more common −238
TNFG allele. The TNF microsatellite TNFa 2 allele (99
basepairs) has been previously associated with higher
TNF secretion [Pociot et al., 1993] and susceptibility to
rheumatoid arthritis [Mulcahy et al., 1996, Field et al.,
1997].

Thus, two of the TNF alleles comprising this AD hap-
lotype are associated with increased TNF production,
which could lead to the chronic inflammatory state and
free radical damage hypothesized to be involved in AD
pathogenesis [Wood, 1995; McGeer et al., 1996]. This
could potentially lead to a lower age of onset for indi-
viduals carrying this haplotype. Although the mean
age of onset for affecteds carrying the haplotype is 1.5
years lower than the mean age of onset of affecteds not
carrying the haplotype, this finding does not reach sig-
nificance.

TNF has been found in the brain lesions of AD along
with other inflammatory cytokines such as interleu-

kin-1 (IL-1), IL-6, and IL-12 [Yen et al., 1995; Fiala et
al., 1998]. This chronic inflammatory state could lead
to subsequent neuronal damage [Tarkowski et al.,
1999] and memory loss [Hauss-Wegrzyniak et al.,
1998]. Previous studies have shown that nonsteroidal
anti-inflammatory drugs (NSAIDs) protect against or
slow the progression of AD [McGeer et al., 1996; Mak-
enzie and Munoz, 1998], with the level of protection
directly related to the level of NSAID use [in’t Veld et
al., 1998]. This protection may be due to the inhibition
of cyclo-oxygenase-2 (COX-2), which then reduces the
generation of reactive oxygen species harmful to the
CNS. COX-2 expression has been shown to be higher in
Alzheimer patients [Pasinetti and Aisen, 1998], espe-
cially within neurofibrillary tangles [Oka and
Takashima, 1997], and TNF has been shown to upregu-
late COX-2 expression [Geng et al., 1995]. In addition,
TNF secretion can be induced by Ab [Klegeris et al.,
1997; Fiala et al., 1998], which upregulates microglia,
releasing TNF and free oxygen radicals [Schubert et
al., 1998] which can oxidize neuronal proteins [Yatin et
al., 1999] and overstimulate the immune system [Behl,
1997; Kaltschmidt et al., 1997]. Therefore, antioxi-
dants may play a key role in protecting the brain from
the free radicals [Pitchumoni and Doraiswamy, 1998]
produced by Ab and COX-2 upregulation.

The involvement of free radicals in AD pathology can
be linked to the APOE «4 allele, which is a major risk
factor for late-onset AD in its homozygous form [Strit-
tmatter et al., 1993; Farrer et al., 1997; Tang et al.,
1998]. The APOE «4 allele has been shown to have the
least antioxidant activity of the three common alleles
[Miyata and Smith, 1996]. Therefore, APOE «3 and «2
allele protection from free radical damage could ex-
plain why AD patients carrying the «4 allele have lower
ages of onset [Corder et al., 1993; Blacker et al., 1997;
Meyer et al., 1998]. Furthermore, individuals with de-
mentia have lower levels of the antioxidant vitamins C
and E [Riviere et al., 1998; Sinclair et al., 1998]. Vita-
min E has also been shown to protect neurons against
Ab toxicity [Behl et al., 1992] and slow the progression
of AD [Sano et al., 1997], which further supports the
protective role of antioxidants in AD pathogenesis.

The three genes which have been found to cause
early-onset AD: the amyloid precursor protein (APP) on
chromosome 21 [Goate et al., 1991], presenillin 1 (PS1)
on chromosome 14 [Schellenberg et al., 1992], and pre-
senillin 2 (PS2) on chromosome 1 [Levy-Lahad et al.,
1995], are proposed to cause AD by increasing the pro-
duction of Ab42 [Scheuner et al., 1996; Selkoe, 1996;
Citron et al., 1997], which aggregates [Jarrett and
Lansbury, 1993] to form neurotoxic AD plaques
[Yankner et al., 1989]. Free radicals produced during
normal brain metabolism oxidize Ab and make it ag-
gregate more easily [Dyrks et al., 1992] into this neu-
rotoxic form. We hypothesize that the known early-
onset AD mutations upregulate TNF and other
cytokines by increasing Ab production, leading to in-
creased free radical production and senile plaque for-
mation, which eventually leads to neuronal lysis.

A recent study implicating the A2M gene in late-
onset AD may also be related to TNF. Blacker et al.
[1998] found a deletion in an A2M gene intron that was

TABLE II. Results of the TNF Polymorphism Association
Analyses*

Allele SIBASSOC S-TDT SDT

TNF-308 1 p 4 0.55 p 4 0.08 p 4 0.17
TNF-308 2 p 4 0.55 p 4 0.11 p 4 0.17
TNF-238 G p 4 0.40 p 4 0.37 p 4 0.81
TNF-238 A p 4 0.40 p 4 0.91 p 4 0.81
TNFa 2 p 4 0.04 p 4 0.23 p 4 0.09
Haplotype 2-1-2 p 4 0.005 p 4 0.02 p 4 0.005

*p-values are not corrected for multiple comparisons.
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associated with AD in NIMH families without APOE «4
alleles, which stayed significant when combined with
National Institute of Aging families [Rudrasingham et
al., 1999]. Wu et al. [1998] independently found a lod
score of 1.91 in AD families without APOE «4 alleles
near the A2M gene on chromosome 12. Additionally,
Myllykangas et al. [1999] found an association in exon
24 of the A2M gene in families without APOE «4 al-
leles, which was accompanied by an increased level of
neuronal Ab. However, other studies have failed to du-
plicate this AD association with the A2M gene [Chen et
al., 1999; Crawford et al., 1999; Dow et al., 1999; Hu et
al., 1999; Rogaeva et al., 1999]. A2M is an acute phase
protein and AD plaque component [van Gool et al.,
1993; Rebeck et al., 1995] that binds to [Hughes et al.,
1998] and degrades Ab [Qiu et al., 1996]. Additionally,
A2M binds TNF [Webb and Gonias, 1998] and may be
regulated by the release of TNF and other cytokines
[Lyoumi et al., 1998]. This A2M deletion may poten-
tially affect Ab and TNF binding sites, leading to less
degradation, additional plaque formation, and immune
stimulation.

AD-affected individuals carrying HLA-A2 in this
study did not have a significantly lower mean age of
onset than those without HLA-A2. This is not consis-
tent with Payami et al. [1997], but can be explained by
the fact that they found a larger difference in sporadic
AD patients, while this study consists of familial AD
patients. Our AD patients also have a mean age of
onset of 69.4 years, while Payami et al. found the most
consistent association in early-onset patients. We did
not find an association between the HLA-A2 allele and
AD, which is consistent with the literature [Payami et
al., 1997; Combarros et al., 1998; Ballerini et al., 1999].

Confirmation is still needed to determine if the TNF
locus is the primary AD associated gene in this region;
however, there is further evidence that this region is
implicated in late-onset AD families. Pericak-Vance et
al. [1997], in a 54-family late-onset AD genomic screen,
found a peak LOD score of 1.37 at marker D6S1019
[Garcia et al., 1999], which maps very close to the TNF
gene. Also, Kehoe et al. [1999] found a lod score of 1.4
near the HLA region in a genome screen of 230 families
with late-onset AD, which were derived from the same
pool of families collected by the NIMH AD Genetics
Initiative.

The reconstruction of parental genotypes and haplo-
types for these analyses by GENEHUNTER may intro-
duce bias by increasing the type one error rate, espe-
cially in families of particular heterozygous parental
mating types [Curtis, 1997; Clayton, 1999; Knapp,
1999]. This procedure may also introduce bias by re-
stricting the analysis to families for which a haplotype
assignment can be made [Clayton, 1999]. In individual
TNF marker analyses using S-TDT and SDT parental
genotypes were not reconstructed, but the use of these
programs for haplotype analysis may introduce bias, as
haplotypes were constructed from sibship genotypes.
However, the results from the SIBASSOC test are valid
and do not incur the false-positive bias when condition-
ing on reconstructed haplotypes [Curtis, 1997]. Our
dataset consists of 151 sibships, a mean sibship size of
3.7, and a median sibship size of 3, which increases the

power of the S-TDT and SDT, and keeps the true type
one error rate close to the expected [Knapp, 1999].
Therefore, the increased average sibship size and typ-
ing of unaffected siblings allows more accurate recon-
struction of parental genotypes [Curtis, 1997; Knapp,
1999] and haplotypes [Clayton, 1999]. Furthermore,
only 5% of the siblings (11 affected and 17 unaffected)
for whom no haplotype could be assigned were dropped
from the analysis.

In this study we chose to examine a broad region
associated with AD because it has been established
that peaks harboring disease genes are longer than
false-positive peaks [Terwilliger et al., 1997], even
though the individual screening markers may not meet
the stringent criteria discussed by Lander and Krug-
lyak [1995]. It has been estimated that four additional
loci may play a role in late-onset AD [Warwick et al.,
2000]; therefore, individual gene contributions may be
difficult to elucidate. We realize that with the use of
subsets as well as nonparametric, parametric, and as-
sociation analyses the level of significance of our re-
sults may be questioned. However, it should be noted
that TNF was the only candidate gene tested in this
region. Due to the implication of this region by others,
the hypothesized role of TNF in AD, and the complexity
of AD genetics, these results merit reporting.

In conclusion, we found that the TNF haplotype 2-1-
2, whose alleles are associated with inflammatory dis-
eases and heightened TNF levels, was significantly as-
sociated with AD. This, along with the evidence that
TNF levels are affected by other known AD mutations
and that increased TNF production can lead to an ex-
acerbation of the inflammatory state and free radical
generation allows us to hypothesize that increased
TNF production can lead to an increased severity of
symptoms or decreased onset age in AD patients, for
which NSAIDs and antioxidants could be protective.
Thus, our results implicating a TNF haplotype lend
further support for the possible role of inflamma-
tory cytokines and free radicals in the pathogenic pro-
cess of AD.
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