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Abstract

Motivation: Structured sparse canonical correlation analysis (SCCA) models have been used to

identify imaging genetic associations. These models either use group lasso or graph-guided fused

lasso to conduct feature selection and feature grouping simultaneously. The group lasso based

methods require prior knowledge to define the groups, which limits the capability when prior

knowledge is incomplete or unavailable. The graph-guided methods overcome this drawback by

using the sample correlation to define the constraint. However, they are sensitive to the sign of the

sample correlation, which could introduce undesirable bias if the sign is wrongly estimated.

Results: We introduce a novel SCCA model with a new penalty, and develop an efficient optimiza-

tion algorithm. Our method has a strong upper bound for the grouping effect for both positively

and negatively correlated features. We show that our method performs better than or equally to

three competing SCCA models on both synthetic and real data. In particular, our method identifies

stronger canonical correlations and better canonical loading patterns, showing its promise for re-

vealing interesting imaging genetic associations.

Availability and implementation: The Matlab code and sample data are freely available at http://

www.iu.edu/�shenlab/tools/angscca/.

Contact: shenli@iu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Sparse canonical correlation analysis (SCCA) (Chen and Liu, 2012;

Chen et al., 2012; Du et al., 2014; Lin et al., 2013; Parkhomenko

et al., 2009; Witten et al., 2009), is a powerful bi-multivariate ana-

lysis technique (Vounou et al., 2010). It has recently become a popu-

lar method in brain imaging genetics studies to identify

bi-multivariate associations between single nucleotide polymorph-

isms (SNPs) and imaging quantitative traits (QTs).

SCCA was initially proposed by Witten et al. (2009) and Witten

and Tibshirani (2009) in the analysis of gene expression data. This

first SCCA model introduced the ‘1-norm (lasso) term into the trad-

itional CCA model to make both canonical loadings sparse. The

penalized matrix decomposition (PMD) technique was used to solve

this sparse learning problem. For a group of correlated features,

lasso tends to randomly select only one feature from the group, and

often cannot recover all the relevant and correlated features. Witten

et al. (2009) and Witten and Tibshirani (2009) also proposed the

fused lasso based SCCA, which takes into account the spatial correl-

ation among features. Thus, neighboring features tend to be selected

together to help discover regional structures.

In order to accommodate other types of structures in the data,

several structured SCCA methods (Chen et al., 2013; Chen and Liu,

2012; Chen et al., 2012; Du et al., 2014, 2015; Lin et al., 2013;

Witten et al., 2009; Witten and Tibshirani, 2009; Yan et al., 2014)

arise recently. We group these SCCA methods into two kinds ac-

cording to their distinct regularization terms. One kind used the

group lasso penalty, and the other kind used the graph/network-

guided fused lasso penalty to conduct feature selection and feature

grouping. The first kind, i.e. the group lasso based SCCA, required

prior knowledge to define the group structure. Lin et al. (2013)

incorporated the priori knowledge into the SCCA model with a

group lasso regularizer, where the same PMD technique was used to

identify non-overlapping group structure. Du et al. (2014) proposed

S2CCA using group lasso, and incorporated both the covariance ma-

trix information and the priori knowledge information to discover

group-level bi-multivariate associations. The KG-SCCA (Yan et al.,

2014) was an extension of S2CCA (Du et al., 2014), which also em-

ployed the group lasso to constrain one canonical loading. This type

of SCCA methods may not be useful when the biological priori

knowledge is incomplete or unavailable. Of note, it is a hard task to

provide precise prior knowledge in real biomedical studies.

The second kind of structured SCCA methods use graph/

network-guided fused lasso penalties. These methods can perform

well on any given priori knowledge. In case the prior knowledge is

not available, these methods can also work via using the sample cor-

relation to define the graph/network constraint. Chen et al. (2013)

proposed ssCCA using a graph-guided fused ‘2-norm penalty for

one canonical loading of the taxa based on their relationship on a

phylogenetic tree. Chen et al. (2012) proposed a network-guided

fused lasso based SCCA which penalized every pair of features by

the ‘1-norm of ðui � ujÞ. It could be viewed as an extension to the

fused lasso based SCCA without demanding the features being

ordered. Du et al. (2015) proposed GN-SCCA which penalizes the

‘2-norm of ðui � ujÞ. These two SCCA methods could only handle

the positively correlated features. Chen and Liu (2012) proposed an

improved network-structured SCCA (NS-SCCA) by incorporating

the sign of the sample correlation within features. NS-SCCA penal-

ized the ‘1-norm of ðui � signðqijÞujÞ to tune a similar weight value

for ui and uj if qij > 0, or dissimilar if qij < 0. The aforementioned

KG-SCCA (Yan et al., 2014) employed ‘2-norm of ðui � signðqijÞujÞ
on one canonical loading. Most of these SCCA methods used the

data-driven correlation as the network constraint, while some incor-

porated prior knowledge to define the network constraint (Chen

and Liu, 2012; Yan et al., 2014). In the data-driven mode, they were

dependent on the sign of the pairwise sample correlation to identify

the hidden structure pattern. Unfortunately, this can introduce add-

itional estimation bias since the sign of the correlations can be

wrongly estimated due to possible graph/network misspecification

caused by noise (Yang et al., 2012).

We focus on the data-driven mode in this paper. We first propose

a novel structured penalty using the pairwise difference of absolute

values between features, which is an improved GraphNet penalty

(Grosenick et al., 2013). Then we introduce our novel structured

SCCA model coupled with an effective SCCA algorithm, i.e. SCCA

using the absolute value based GraphNet (AGN-SCCA). Our contri-

butions are summarized as follows. (i) The new regularizer penalizes

the difference between the absolute values of the coefficients no matter

whether their correlations are positive or negative. Thus it could tune

both positively and negatively correlated features to have similar

weights despite the correlation signs. (ii) AGN-SCCA could reduce es-

timation bias due to its independence to the signs of sample correl-

ation, and thus has better performance and generalization ability than

those methods dependent on sample correlation signs. (iii) We provide

a quantitative upper bound for the grouping effect of AGN-SCCA and

prove that the algorithm is guaranteed to converge fast. (iv) On both

synthetic and real imaging genetic data, AGN-SCCA yields higher or

comparable correlation coefficients, and generates more accurate and

cleaner patterns than three competing methods, i.e. L1-SCCA (CCA

with lasso) (Witten et al., 2009; Witten and Tibshirani, 2009) FL-

SCCA (CCA with fused lasso) (Witten et al., 2009; Witten and

Tibshirani, 2009) and NS-SCCA (Chen and Liu, 2012).

2 Methods

In this paper, we use the boldface lowercase letter to denote a vector,

and use the boldface uppercase one to denote a matrix. mi repre-

sents the ith row of matrix M. We use X ¼ fx1; . . . ; xng � Rp and

Y ¼ fy1; . . . ; yng � Rq to denote the SNP data and the QT data

originating from the same population. The SCCA model proposed

in (Witten et al., 2009; Witten and Tibshirani, 2009) can be defined

as follows:

min
u;v
�uTXTYv (1)

st jjujj22 � 1; jjvjj22 � 1; jjujj1 � c1; jjvjj1 � c2; where jjujj1 � c1 and

jjvjj1 � c2 are constraints for controlling the model sparsity, and

typical constraints include lasso (Chen et al., 2012; Parkhomenko

et al., 2009; Witten et al., 2009; Witten and Tibshirani, 2009) and

fused lasso (Witten et al., 2009; Witten and Tibshirani, 2009).

2.1 The new penalty
Grosenick et al. (2013) have extended the traditional elastic net reg-

ularizer to a more general form, which is named GraphNet, i.e.

jjujjGN ¼ k1uTMuþ b1jjujj1 (2)

where M is a matrix, and ðk1; b1Þ are tuning parameters. Note that

GraphNet becomes the elastic net if M ¼ I (Grosenick et al., 2013).

Typical GraphNet studies (Du et al., 2015; Grosenick et al., 2013)

have M ¼ L, where L is the Laplacian matrix of a graph. Let G be

the graph formed by our sample correlation matrix A. Let D be a di-

agonal degree matrix with the following diagonal entries:

Dði; iÞ ¼
P

j Aði; jÞ. The Laplacian matrix L is defined as L ¼ D� A

An improved GraphNet method 1545



(Grosenick et al., 2013). When M ¼ L, the GraphNet term can be

transferred and written as:

jjujjGN ¼ k1

X
ði;jÞ2G

wi;jðui � ujÞ2 þ b1jjujj1: (3)

It is easy to see that this penalty only puts emphasis on the posi-

tively correlated features, and does not take into consideration the

negatively correlated features. To address this issue, we introduce a

novel penalty which uses the pairwise difference between absolute val-

ues instead, i.e.
P
ðjuij � jujjÞ2. SCCA requires two penalties, one for

each canonical loading. Thus, we propose the following new penalties:

jjujjAGN ¼ k1

X
wi;jðjuij � jujjÞ2 þ b1jjujj1;

jjvjjAGN ¼ k2

X
w0i;jðjvij � jvjjÞ2 þ b2jjvjj1:

(4)

where wi;j and w0i;j depend on the pairwise sample correlation of X

and Y respectively. b1jjujj1 and b2jjvjj1 are used to control the model

sparsity.

In accordance to the form of GraphNet, we rewrite the penalty

and call it absolute value based GraphNet penalty,

jjujjAGN ¼ k1jujTL1juj þ b1jjujj1;

jjvjjAGN ¼ k2jvjTL2jvj þ b2jjvjj1:
(5)

where L1 and L2 are Laplacian matrices of the correlation matrices

of X and Y respectively.

The main motivations for proposing jjujjAGN are as follows.

First, if we have some priori knowledge, e.g. the pathway informa-

tion about genetic markers, each pairwise penalty encourages juij
and jujj to be similar. This makes sure that the two markers have a

high probability to be selected together if they are connected on the

graph. Second, if the priori knowledge is unavailable, every pairwise

term will be imposed to encourage juij � jujj for both positively and

negatively correlated features based on the strength of their sample

correlations, which will be supported by Theorem 1. Third, genetic

(or imaging) markers in the same pathway (or brain circuitry) could

play different roles for a specific disease. That is, some markers

could be significant, while others could be irrelevant. Therefore, we

impose lasso to assure additional sparsity.

2.2 AGN-SCCA model and proposed algorithm
By imposing the novel GraphNet penalty into a CCA model, we ob-

tain our AGN-SCCA model.

min
u;v
�uTXTYv (6)

st jjXujj22 � 1; jjYvjj22 � 1; jjujjAGN � c1; jjvjjAGN � c2:

Note that we utilize jjXujj22 � 1 and jjYvjj22 � 1, which embraces

the covariance structure of the data in our model. The strength of

this strategy has been demonstrated by our prior S2CCA work (Du

et al., 2014).

Using Lagrange multiplier method, we define the Lagrangian L
below,

Lðu; v;CÞ ¼ �uTXTYvþ k1

2
jujTL1juj þ

b1

2
jjujj1

þ k2

2
jvjTL2jvj þ

b2

2
jjvjj1 þ

c1

2
jjXujj22 þ

c2

2
jjYvjj22

(7)

where C ¼ fk; b; cgf 0 are the Lagrange multipliers, which are also

called dual variables.

According the Lagrange duality, the Lagrangian can represent

problem Eq. (6) as the following unconstrained one,

p� ¼ min
u;v

max
Cf0
Lðu; v;CÞ (8)

Now that there is no constraint term in Lagrangian L, it is easy

to solve Eq. (8) than Eq. (6). Given the optimal dual variables C�,
we could obtain the solution by taking derivative regarding u and v

respectively, and let both of them be zero.

@L
@u
¼ 0;

@L
@v
¼ 0; (9)

However, the new proposed penalty is non-differentiable at zero

value owning to the ‘1-norm term and the absolute value based

GraphNet term. Thus we use the sub-gradient in Eq. (9) instead, and

obtain the following (if juij ¼ 0, the ith element of diagonal matrix

D1 is not available. So we regularize the element in D1 as 1

2
ffiffiffiffiffiffiffiffi
u2

i
þf

p (f is

a very small positive number) when juij ¼ 0. Then the objective

function regarding u is L�ðuÞ ¼
Pp

i¼1ð � uix
T
i Yvþ k1

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i þ f
q

L1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i þ f
q

þ b1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i þ f
q

þ c1

2 jjxiuijj22Þ. It is easy to prove

that L�ðuÞ will reduce to problem (7) regarding u when f! 0.

Those jvij ¼ 0 can also be regularized by the same strategy),

ðk1
bD1 þ b1D1 þ c1XTXÞu ¼ XTYv; (10)

ðk2
bD2 þ b2D2 þ c2YTYÞv ¼ YTXu; (11)

where D1 is a diagonal matrix with the ith element as 1
2jui j ði 2 ½1; p�Þ,

and D2 is a diagonal matrix with the jth element as 1
2jvj j ðj 2 ½1;q�Þ.

bD1 is a diagonal matrix with the k1th element as
L

k1
1
juj

juk1
j ðk1 2 ½1;p�Þ,

where Lk1

1 is the k1th row of the Laplacian matrix L1. Similarly, bD2

is the diagonal matrix with the k2th element as
L

k2
2
jvj

jvk2
j ðk2 2 ½1; q�Þ,

and Lk2

2 is the k2th row of the Laplacian matrix L2.

Both D1 and bD1 depend on u; and both D2 and bD2 depend on v.

Since u and v are unknown, we propose an effective iterative algo-

rithm called AGN-SCCA to solve this problem. Algorithm 1 shows

the pseudocode. In each iteration, the algorithm first fixes v to calcu-

late u and then fixes u to calculate v. This procedure repeats until it

converges.

Computational analysis. Step 4 and Step 7 are the key steps of

Algorithm 1. To assure the efficiency, we solve a system of linear

equations with quadratic complexity to update u and v other than

computing the matrix inverse with cubic complexity. Step 10 is a

simple operation to rescale the results. So, the whole procedure is ef-

ficient and runs fast. Moreover, the algorithm is guaranteed to con-

verge, as shown in Theorems 2 and 3.

2.3 The grouping effect analysis
It is important to investigate the grouping effect of the a structured

learning method in handling high-dimensional data (Zou and

Hastie, 2005). Although many structured SCCA methods have been

proposed and could recover structure pattern practically. None of

them provides a theoretical bound for the grouping effect. In this

work, we have the following theorem which provides a qualitative

theoretical bound in grouping correlated features.

THEOREM 1 Given two datasets X and Y, and the pre-tuned par-

ameters ðk;b; cÞ. Let ~u be the solution to our SCCA problem of Eqs.

(10) and (11). Without loss of generality, we consider the uith and

ujth feature are only linked to each other on the graph, i.e. ei;j ¼ 1.

1546 L.Du et al.



Let qij is the sample correlation between them, wi;j is their edge

weight. Then the estimated canonical loading u satisfies,

j~ui � ~ujj �
1

c1 þ 2k1wi;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� qijÞ

q
; if qij 	 0;

j~ui þ ~ujj �
1

c1 þ 2k1wi;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ qijÞ

q
; if qij < 0;

(12)

and the estimated canonical loading v satisfies,

j~vi � ~vjj �
1

ðc2 þ 2k2w0i;jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� q0ijÞ

q
; if q0ij 	 0;

j~vi þ ~vjj �
1

ðc2 þ 2k2w0i;jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ q0ijÞ

q
; if q0ij < 0:

(13)

where w0i;j is the weight between the ith and jth feature of v, and q0ij
is their sample correlation coefficient.

The proof of this theorem can be found in Appendix A (See

Supplementary File). Theorem 1 not only provides an upper bound

for the difference between the canonical loading paths of the ith and

jth features when they are positively correlated, but also provides a

quantitative description when they are negatively correlated. If

qij 	 0, the higher correlation two features have, the smaller differ-

ence there is between their coefficients. While if qij < 0, a smaller

value will generate a closer-to zero value for the sum of their coeffi-

cients. This is desirable because AGN-SCCA can estimate the coeffi-

cients with equal amplitude except signs for two negatively

correlated features. This quantitative description for the grouping

effect demonstrates that our novel structured SCCA is suitable for

sparse structure learning.

2.4 The convergence analysis
We have the following theorems regarding the Algorithm 1.

THEOREM 2 The problem Eq. (8) is lower bounded by –1.

THEOREM 3 In each iteration, the AGN-SCCA algorithm monot-

onously decreases the objective value till it converges.

The proofs are provided in Appendix B and C (See

Supplementary File) due to space limitation. Since the objective

value keeps deceasing during the iteration, and the problem has the

lower bound, the proposed algorithm is guaranteed to converge to a

local optimum.

In our implementation, we set the stopping criterion of Algorithm 1

as maxfjdjjd 2 ðutþ1 � utÞg � s and maxfjdjjd 2 ðvtþ1 � vtÞg � s,

where s is a predefined estimation error. In this paper, s ¼ 10�5 is em-

pirically set based on experiments.

3 Experiments

3.1 Experimental setup
3.1.1 Benchmarks

We chose three existing SCCA methods for comparison in this study,

one is the state-of-the-art method NS-SCCA (network-structured

CCA) (Chen et al., 2013), and the other two methods are the L1-

SCCA (CCA with lasso) and FL-SCCA (CCA with fused lasso). The

latter two can be found in package PMA (the PMA software package

implements both L1-SCCA and FL-SCCA, and they are widely used

as benchmark algorithms. See http://cran.r-project.org/web/packages/

PMA/for details), which is widely used for SCCA studies. We do not

compare our method with KG-SCCA (Yan et al., 2014) due to two

reasons: (i) KG-SCCA uses ‘2;1-norm on one canonical loading (simi-

lar to S2CCA), uses ‘2-norm of ðui � signðqijÞujÞ on the other (similar

to NS-SCCA), and requires predefined group and network structures.

(ii) NS-SCCA uses the ‘1-norm of ðui � signðqijÞujÞ, which is sup-

posed to be more reasonable in sparse learning than KG-SCCA since

‘1-norm is a sparse constraint but ‘2-norm is not. Therefore we in-

clude NS-SCCA instead of KG-SCCA as a competing method. We

also do not compare our method with GN-SCCA (Du et al., 2015) be-

cause it only focuses on the positively correlated features. In addition,

ssCCA (Chen et al., 2013), CCA-SG (CCA-sparse group) (Lin et al.,

2013) and S2CCA (Du et al., 2014) are opted out, since they are

knowledge-guided methods and applicable only when priori know-

ledge is available.

3.1.2 Parameter tuning

According to Eqs. (10) and (11), we have six parameters to be tuned.

Obviously, this is very time consuming by blind grid search. Thus

we here employ some tricks to speed up the tuning procedure. The

major difference between the traditional CCA and SCCA is the pen-

alty terms. On one hand, SCCA and CCA will yield similar results if

the parameters are too small. On the other hand, SCCA will over-

penalize the result when the parameters are too large. Thus a neither

too large nor too small parameter is more reasonable. As a result,

we tune these parameters from [10�2; 10�1, 10


, 101, 102]. All the

parameters are tuned through the nested 5-fold cross-validation

CVðk;b; cÞ ¼ 1
5

P5
j¼1 CorrðXju�j;Yjv�jÞ where Xj and Yj denote the

jth subset of the input data (testing set), and u�j and v�j mean the ca-

nonical loadings estimated from the training set. We choose the arg

max CVðk; b; cÞ as the tuned optimal parameters. For efficiency pur-

pose, these parameters are only tuned from the first run of the cross-

validation strategy. That is, the parameters are tuned when the first

four folds are used as the training set. Then we directly use the tuned

parameters for all the remaining experiments. Though this could

limit the performance for the rest of the experiments, we find that it

will not affect the performance significantly from the results which

will be shown later. All these methods utilize the same partition dur-

ing cross-validation to make a fair comparison.

3.2 Results on synthetic data
We simulate four different datasets with different properties in this

study, and we expect the diversity could make sure a thorough com-

parison. The true signals and the strengths of correlation coefficients

within these data are distinct. As a simulation of a large p small n

Algorithm 1. The AGN-SCCA Algorithm

Require:

X ¼ fx1; . . . ; xngT ;Y ¼ fy1; . . . ; yng
T

Ensure:

Canonical loadings u and v.

1: Initialize u 2 Rp�1; v 2 Rq�1; L1 ¼ Du � Au and

L2 ¼ Dv � Av only on the training set;

2: while not converged do

3: while not converged regarding u do

4: Solve u according to Eq. (10)

5: end while

6: while not converged regarding v do

7: Solve v according to Eq. (11)

8: end while

9: end while

10: Scale u so that jjXujj22 ¼ 1, and v so that jjYvjj22 ¼ 1.
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problem, we here set the number of observations be smaller than the

number of features, i.e. n¼80, p¼100 and q¼120. The generation

procedure is similar to that in (Chen and Liu, 2012) except for the

last step: (i) We create u and v separately according the predefined

structure. (ii) We generate a latent variable z � Nð0; In�nÞ. (iii) We

generate X with the entry: xi � Nðziu;
P

xÞ, where

ð
P

x Þjk ¼ exp�juj�uk j, and Y with the entry: yi � Nðziv;
P

yÞ, where

ð
P

y Þjk ¼ exp�jvj�vk j. (iv) For the first group of nonzero coefficients

in u, we change the first half of their signs. At the same time, we also

change the signs of the corresponding data. As a result, we still have

X0u0 ¼ Xu where X0 and u0 are the data matrix and coefficients after

the sign swap. Note that these synthetic data are order-independent,

and thus this setup is equivalent to randomly change a portion of

signs for coefficients u (Yang et al., 2012). For the Y side, we do the

same. The details of the four datasets are as follow. (i) The first two

datasets have the same signal structure, i.e. the same group structure

regarding u and v. But their correlation coefficients are different.

The correlation coefficient of the first dataset is 0.52, while that of

the second dataset is 0.17. (ii) The third dataset is different from the

first two datasets in its group structure regarding u and v. Its correl-

ation coefficient is 0.58. (iii) The fourth dataset is different from all

the above three datasets in its group structure regarding u and v. Its

correlation coefficient is 0.51. The true signal of each dataset can be

observed from the first row in Figure 1.

In Table 1, we present the estimated correlation coefficients

from both training and testing data, and their differences from the

true correlation coefficients (i.e. the numbers in parentheses). We

use the boldface to highlight the highest value as well as those that

are not significantly smaller than the highest value. For the training

set, we observe that our method obtains the best correlation coeffi-

cients on Dataset 2 and Dataset 3, and it is only slightly smaller than

the best method on the rest of the two datasets. Though AGN-

SCCA does not obtain the highest for every dataset, it is not statistic-

ally different from the best method. If we consider the true correl-

ation coefficients, we observe that AGN-SCCA and L1-SCCA are

two methods which have smaller estimation errors. That is, both

AGN-SCCA and L1-SCCA identify more accurate correlation coeffi-

cients than FL-SCCA and NS-SCCA regarding the training results.

For the testing set, AGN-SCCA outperformed the competing meth-

ods on Dataset 3, and was not significantly different from the best

method on the remaining datasets. Besides, AGN-SCCA’s estimation

error is the smallest for Datasets 2–4, which means it performs bet-

ter than the competing methods regarding the prediction perform-

ance. Generally, this is more interesting since the testing

performance is more important than the training results. These re-

sults show that AGN-SCCA either outperforms or performs simi-

larly to those competing methods in terms of estimated correlation

coefficients.

We show the estimated canonical loadings of four SCCA meth-

ods in Figure 1. As we can see, none of these methods could generate

stable results for the small-n-large-p problem when using cross-

validation strategy. They still exhibit group structures for the esti-

mated canonical loadings. However, neither L1-SCCA nor

FL-SCCA can accurately recover the true signals. They cannot iden-

tify those coefficients with signs swapped. Thus they treat the

positively and negatively correlated features with no difference. NS-

SCCA and AGN-SCCA successfully recognize the coefficients whose

signs are changed. The reason is that AGN-SCCA uses the absolute

difference between the coefficients, and NS-SCCA takes advantage

of the sign of sample correlation. Note the sign of sample correlation

depends on the signal-to-noise ratio (SNR), and it is likely to be

wrong due to a high proportion of noise. Therefore, for the three

datasets with high correlations (Dataset 1, Dataset 3 and Dataset 4),

NS-SCCA could exhibit a similar pattern to AGN-SCCA with re-

spect to the canonical loadings. While for the second dataset whose

correlation is small, AGN-SCCA outperforms NS-SCCA in terms of

the structure pattern, especially for the canonical loading v. In order

to make this clear, we also calculate the AUC (area under ROC

curve) to present the performance regarding the canonical loadings

pattern in Table 2 with those best values marked in bold. We ob-

serve that both structured SCCA, i.e. AGN-SCCA and NS-SCCA,

perform consistently better than L1-SCCA and FL-SCCA. Our

AGN-SCCA obtains the best scores in most runs except on few

folds, especially for the canonical loadings v.

In summary, the AGN-SCCA not only estimates the most accur-

ate correlation coefficients in most cases, but also identifies the sig-

nal locations with the best accuracy in all the cases. These promising

results reveal that our method outperforms the competing methods,

showing that it can handle a range of synthetic datasets with distinct

structures and correlations.

3.3 Results on real neuroimaging genetics data
Apart from the synthetic data, it is essential to evaluate our method

on real neuroimaging genetics data. Real imaging genetics data used

in the preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.us-

c.edu). The ADNI was launched in 2003 as a public-private partner-

ship, led by Principal Investigator Michael W. Weiner, MD. The

primary goal of ADNI has been to test whether serial magnetic res-

onance imaging (MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive im-

pairment (MCI) and early Alzheimer’s disease (AD). For up-to-date

information, see www.adni-info.org.

The genotyping and baseline amyloid imaging data (prepro-

cessed [11C] Florbetapir PET scans) of 283 non-Hispanic Caucasian

participants were downloaded from the ADNI website (adni.loni.us-

c.edu). The amyloid imaging data were preprocessed according to

the steps in (Yan et al., 2014), and then pre-adjusted by regressing

out the effects of the baseline age, gender, education and handed-

ness. Using the voxel-based imaging data, we extracted 191 ROI

level mean amyloid measurements, where the ROIs were defined

by MarsBaR AAL atlas. For the genotyping data, we included 58

SNP markers within the APOE gene, including the APOE e4

SNP rs429358 (i.e. the best-known AD genetic risk factor)
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(Ramanan et al., 2014). We aim to evaluate the associations between

the amyloid data and the APOE SNP data using the proposed method.

In Table 3, we present the correlation coefficients estimated by

the four different SCCA methods via 5-fold cross-validation strat-

egy. As we can see, AGN-SCCA can not only identify the strongest

correlation on the training set, but also outperform those competing

methods on the testing set. Although all methods yield acceptable

correlation coefficients, AGN-SCCA significantly and consistently

outperforms other SCCA methods, demonstrating its capability in

identifying strong imaging genetic associations.

We also show the canonical loadings estimated from the train-

ing set in Figure 2 using the heat maps. In Figure 2, each row

refers to a method. The estimated u, containing weights for genetic

markers, is shown on the left panel and the estimated v, containing

weights for the imaging markers, is shown on the right. For the ca-

nonical loading u, AGN-SCCA only identified the APOE e4 SNP

rs429358, i.e. the best-known AD genetic risk factor. L1-SCCA

and FL-SCCA also discovered the APOE e4 SNP, but reported

much more additional SNPs than AGN-SCCA. Thus their results

are not as sparse as AGN-SCCA. NS-SCCA also identified many

SNPs which is hard to interpret. For the v side, we can observe

that FL-SCCA fused the results of L1-SCCA because of its pairwise

smoothness penalty. However, their results consists of too many

signals, making them hard to interpret. NS-SCCA identified even

more signals than FL-SCCA and L1-SCCA due to its pairwise

smoothness imposed on the whole graph, which is suboptimal for

biomarker discovery.

As a result, we could see that AGN-SCCA exhibits a very clean

pattern and reports very few relevant imaging signals, including

frontal and caudate regions that are known to be related to AD (Jiji

et al., 2013). In short, the proposed AGN-SCCA algorithm success-

fully discovered a biologically meaningful associations between

APOE SNP rs429358 and the amyloid accumulations at the AD

related brain regions. This demonstrates that AGN-SCCA can not

only reveal strong imaging genetic associations, but also identify

meaningful and relevant genetic and imaging markers.

4 Conclusion

We have proposed a novel structured regularization term using the

pairwise difference between absolute values of two weights, and

incorporated it into a SCCA framework. This proposed structured

SCCA model, named as AGN-SCCA, aims to discover any group or

network structure laying behind the data. We have demonstrated

that AGN-SCCA has strong upper bound of grouping effect, and

have developed an iterative procedure with proven convergence.

The existing structured SCCA methods either use the group lasso

(Du et al., 2014; Lin et al., 2013; Yan et al., 2014) or the graph/net-

wrok-guided fused lasso (Chen et al., 2013; Chen and Liu, 2012;

Chen et al., 2012; Du et al., 2015; Yan et al., 2014) to model the

structure information. The first type of methods rely on prior

knowledge to define the group structure, and the prior knowledge is

sometimes unavailable in real applications. The latter type of meth-

ods can perform well on any given priori knowledge. In case the

prior knowledge is not available, these methods can also work via

using the sample correlation to define the graph/network constraint.

However, they depend on the sign of sample correlation being

defined in advance, which could be wrongly estimated due to pos-

sible graph/network misspecification caused by noise (Yang et al.,

2012).

Our proposed SCCA is different from those previously published

ones in the following aspects: (i) AGN-SCCA employs a novel abso-

lute value based GraphNet penalty, and it does not require to esti-

mate the sign of sample correlation. (ii) The AGN-SCCA could tune

positively correlated features as well as negatively correlated ones to

have similar weights despite the correlation signs. (iii) AGN-SCCA

has a strong theoretical upper bound for the grouping effect, and the

corresponding algorithm is guaranteed to converge fast.

We have compared AGN-SCCA with three competing SCCA

methods with different penalty functions, including L1-SCCA, FL-

SCCA and NS-SCCA, using both synthetic data and real imaging

genetics data. The experimental results demonstrate the following:

(i) For the estimated correlation coefficients, AGN-SCCA obtained

the best or comparable results on the synthetic data, and signifi-

cantly outperformed the competing methods on the real data. (ii)

For the estimated canonical loadings, AGN-SCCA yielded better ca-

nonical loading pattern on both synthetic data and real data, espe-

cially on the real data where it produced much cleaner patterns than

the competing methods. By discovering a strong association between

the APOE SNP data and the amyloid accumulation data in an AD

study, AGN-SCCA demonstrated itself as a promising structured

SCCA method. The theoretical convergence and upper bound of the

grouping effect further reveal that AGN-SCCA is of efficiency and

effectiveness in identifying meaningful bi-multivariate associations

in brain imaging genetics studies. In this work, we only tested AGN-

Table 3. 5-fold cross-validation results on real data: the estimated correlation coefficients of each individual fold and their MEAN are shown

Methods Training results MEAN Testing results MEAN

L1-SCCA 0.57 0.56 0.56 0.56 0.54 0.56 0.46 0.54 0.53 0.49 0.63 0.53

FL-SCCA 0.51 0.48 0.50 0.50 0.48 0.49 0.38 0.51 0.45 0.44 0.56 0.47

NS-SCCA 0.53 0.50 0.53 0.51 0.50 0.52 0.41 0.42 0.37 0.42 0.62 0.45

AGN-SCCA 0.61 0.59 0.59 0.59 0.58 0.59 0.48 0.59 0.57 0.52 0.65 0.56

The best value and those that are NOT significantly worse (t-test with p-value smaller than 0.05) are shown in boldface.
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Fig. 2. Canonical loadings estimated on real imaging genetics dataset. Each

row corresponds to an SCCA method: (1) L1-SCCA. (2) FL-SCCA. (3) NS-

SCCA. (4) AGN-SCCA. For each method, the estimated weights of u are

shown on the left panel, and those of v are on the right
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SCCA while using data-driven covariance structure as the graph/net-

work constraint. In the future, we will apply the AGN-SCCA model

to more general cases and test its performance when priori know-

ledge is available.
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