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The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated

the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and exclud-

ing the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and

37 154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether

the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an

independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and

1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating

characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component

enriched in Alzheimer’s disease (P = 4.9 � 10�26). This enrichment remained significant after APOE and other genome-wide

associated regions were excluded (P = 3.4 � 10�19). The best prediction accuracy AUC = 78.2% (95% confidence interval

77–80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion,

Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a

valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low

risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case

prediction from chance with increased prediction at polygenic extremes.
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Introduction
Genome-wide association (GWA) studies have proved a

powerful method to identify susceptibility alleles for com-

plex diseases. The most powerful currently undertaken

study, provided by the International Genomics of

Alzheimer’s Project (IGAP), has identified over 20

Alzheimer’s disease susceptibility loci (Lambert et al.,

2013). GWA study datasets can be used to determine a

polygenic contribution of common single nucleotide poly-

morphisms (SNPs) that show disease association but fail to

meet the accepted P-value threshold for genome-wide sig-

nificance (P5 5 � 10�8). Recent studies confirm that the

estimated heritability detected in Alzheimer’s disease

GWA studies (24–35%) (Lee et al., 2013) increases sub-

stantially when weak effect loci are also considered. This

strongly implies that a large proportion of the genetic signal

must lie below the genome-wide significance threshold.

The polygenic score approach encompasses more of the

causal variance, as a genetic risk score is calculated based

not solely on genome-wide significant polymorphisms, but

on all nominally associated variants at a defined signifi-

cance threshold (typically thousands of variants). This

type of analysis has recently shown significant polygenic

contribution in other complex genetic diseases. For example

in Parkinson’s disease, a polygenic basis was confirmed and

shown to correlate with age at disease onset (Escott-Price

et al., 2014). The method can also be used to identify over-

lap in genetic determinants between related disorders, e.g.

schizophrenia and bipolar disorder; depression and anxiety

(Demirkan et al., 2011). While the polygenic method un-

doubtedly introduces noise by including some variants that

are not involved in disease susceptibility (i.e. false posi-

tives), this is more than offset by the increased power to

identify those at highest/lowest risk of disease. Trait differ-

ences between those with highest/lowest polygenic risk

scores have also been identified. For example, in a study

of the Lothian Birth Cohort, increased polygenic risk of

schizophrenia was associated with lower cognitive ability

at age 70 and greater relative decline in general cognitive

ability between the ages of 11 and 70 (McIntosh et al.,

2013).

We investigated the polygenic architecture of Alzheimer’s

disease using the powerful IGAP GWA dataset (Lambert

et al., 2013). The IGAP dataset was split into two inde-

pendent subsets before the polygenic contribution to

Alzheimer’s disease was investigated by assessing whether

score alleles identified in one subset were significantly

enriched in cases from another subset.

We also investigated the prediction accuracy of the

model, which includes the number of e4 and e2 alleles at

the APOE gene, a polygenic score component based upon

genome-wide significant loci, and a polygenic score compo-

nent constructed using all independent markers within the

dataset including statistically not-significant SNPs. For this

analysis we used 3049 cases and 1554 controls for whom

APOE genotype data were available. Furthermore we

looked at the utility of the polygenic score when the
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analysis was restricted to subjects with e2 and e3 alleles

only. As age is a strong predictor of Alzheimer’s disease,

we tested the prediction models in samples stratified by age.

To test the sensitivity of the prediction models to popula-

tion differences we ran the same analyses for subjects from

the UK, USA and Germany separately.

We also modelled the predictive utility of the polygenic

score using a range of disease prevalences reflecting those

incubating disease in different age groups (e.g. 17%

Alzheimer’s disease prevalence in those aged 75–84 or

those with early stage of the disease who are 60–65 years

now). We modelled early stage disease incubation as we

now aware that Alzheimer’s disease may begin between

10–30 years before clinical symptoms are observed

(Frisoni et al., 2010; Weiner et al., 2015). Different disease

prevalences may also reflect groups that already have

biomarker indicators of disease e.g. plaque deposition,

mild cognitive impairment, of which 50% are early

Alzheimer’s disease. We also estimated positive (PPV) and

negative predictive values (NPV) for polygenic score and

extreme cut-off of polygenic score, but point out that

these values are just estimates and may differ in the

sample populations modelled.

Materials and methods
We used the discovery dataset reported by the IGAP consor-
tium (Lambert et al., 2013), comprising 17 008 Alzheimer’s
disease cases and 37 154 controls. This sample of
Alzheimer’s disease cases and controls comprises four datasets
taken from GWA studies performed by GERAD (Genetic and
Environmental Risk for Alzheimer’s disease), EADI (European
Alzheimer ’s disease Initiative), CHARGE (Cohorts for Heart
and Aging Research in Genomic Epidemiology) and ADGC
(Alzheimer’s Disease Genetics Consortium) (Lambert et al.,
2013). Full details of each study including the samples and
methods used are provided elsewhere (Harold et al., 2009;
Lambert et al., 2009; Seshadri et al., 2010; Hollingworth
et al., 2011; Naj et al., 2011). Each of the four datasets
were imputed with either Impute2 (Howie et al., 2009) or
MACH (Li et al., 2010) software, using the 1000 Genomes
data (release Dec 2010) as a reference panel.

Polygenic score analysis

We followed the approach previously described by the
International Schizophrenia Consortium (International
Schizophrenia et al., 2009). The polygenic score analysis re-
quires two independent datasets. For the first, result data are
sufficient as this dataset is used to select the SNPs, the risk
score alleles and their genetic effects. The second dataset is
used to test whether the polygenic risk scores differ in cases
and controls and requires the genotypes for each individual.
The meta-analysed results data of the EADI, CHARGE and
ADGC consortia (13 831 cases and 29 877 controls, hereafter
referred to as IGAP.noGERAD) were used for SNP selection.
We used the individual genotypes of the GERAD consortium
(Harold et al., 2009) data (3177 cases and 7277 controls); we
used the GERAD data as the test sample.

We included only autosomal SNPs that passed stringent
quality control criteria, i.e. minor allele frequencies50.01
and imputation quality score5 0.5 in each study. This resulted
in 6 928 531 SNPs, which were present in at least 40% of the
Alzheimer’s disease cases and 40% of the controls, being
included in the analysis. The summary statistics across the
three datasets were combined using fixed-effects inverse vari-
ance-weighted meta-analysis.

Using GERAD study data we performed (i) random linkage
disequilibrium pruning using r240.2; and (ii) ‘intelligent’
pruning [–clump option in PLINK (Purcell et al., 2007) genetic
analysis tool] using the same r2 parameter and a physical dis-
tance threshold for clumping SNPs of 1 Mb. The random link-
age disequilibrium pruning resulted in 401 584 SNPs that are
in relative linkage equilibrium (r240.2) and common between
GERAD and IGAP.noGERAD datasets. The ‘intelligent’ prun-
ing allows one to capture SNPs that are most (even if
not-significantly) associated with the disease in a linkage dis-
equilibrium block. This ‘intelligent’ pruning identified 538 363
independent SNPs that were most significantly associated with
Alzheimer’s disease in IGAP.noGERAD data. We selected mar-
kers, based upon significance thresholds, to construct a poly-
genic score in the GERAD data. The polygenic score was
calculated from the effect size (b)-weighted sum of associated
alleles within each subject. Polygenic scores were normalized
by subtracting the mean and dividing by the standard
deviation.

We assessed a variety of significance thresholds for the
selection of markers for polygenic score construction; overlap-
ping panels of markers were used (e.g. significant at P4 0.01,
0.05, 0.1,. . ., 1 in the IGAP.noGERAD) in the construction of
a subject-level score in GERAD case/control sample. The abil-
ity of each panel-based score distribution to distinguish those
with disease from cognitively normal individuals was assessed
using logistic regression analysis while adjusting for age, sex,
country of origin and three principal components (Harold
et al., 2009), reflecting underlying stratification in the sample
due to population and/or genotyping technique differences.

Analysis of predictive accuracy

To find the best predictors of the Alzheimer’s disease, we
tested a variety of regression models. For this analysis we
used the genotyped (rather than imputed) SNP data for the
following reasons. Imputed genotype data contain probabilities
of each of three genotypes, rather than the actual genotype. As
the relevant software suitable for this analysis requires actual
genotypes [e.g. intelligent pruning (–clump) option in PLINK],
the probabilities were converted to actual genotype data, only
if the probability was 40.9. This conversion increased missing
value rates and, therefore SNPs with 410% missing values
were excluded from the analysis. We ran the predictive ana-
lyses on imputed data, and note that the prediction accuracy is
sensitive to the number of missing genotypes, which was exa-
cerbated by the uncertainty of imputation aggregated across
large numbers of SNPs contributing to the polygenic score.
The intelligent pruning was performed using summary statis-
tics for IGAP.noGERAD data, and thus the most significant
SNPs in this dataset were not necessarily the same as genome-
wide significant SNPs in the full IGAP data. Therefore, to rep-
resent genome-wide significant results in our analyses, we
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chose the best proxies to the genome-wide significant SNPs

(Lambert et al., 2013) from the ‘intelligently’ pruned data.
As the genotyped data at the APOE locus contained only

proxy SNPs for the APOE-e4 and APOE-e2 variants
(rs429358 and rs7412), we limited our analysis to those indi-
viduals (3049 Alzheimer’s disease cases and 1554 controls) for

whom we had APOE genotype data. For the other 21 genome-
wide significant SNPs (Lambert et al., 2013), proxies with

r24 0.8 were available for 11 SNPs in the GERAD data, for
an additional seven loci we had genotyped markers that were

in modest linkage disequilibrium (r2 between 0.5 and 0.8) with
a genome-wide significant marker. Two genome-wide signifi-

cant SNPs in the SLC24A4/RIN3 and CD33 loci had proxies
with r2

� 0.3 (Supplementary Table 1). We excluded the

DSG2 gene as this association did not replicate in IGAP
stage 2 (Lambert et al., 2013), and the best proxy to the
putative genome-wide significant SNP was in low linkage dis-

equilibrium (r2 = 0.06) in the GERAD sample.
We calculated sensitivity, specificity, area under the receiver

operating characteristic curve (AUC), PPV and NPV by com-
paring the observed case/control status and the predicted prob-

ability estimated by logistic regression models using the
prediction() and performance() functions in R-statistical soft-
ware. PPV and NPV values were calculated adjusting for the

lifetime risk of Alzheimer’s disease with BDtest() function,
‘bdpv’ package in R. We chose to use lifetime risk (17%)

and prevalence at age 85 and above (32%) (Hebert et al.,
2013) to prioritise subjects of age 60–65 for clinical trials.

These people may not have Alzheimer’s disease yet, but are
at early stage of the disease, which may manifest 20–30 years

later.
As heterogeneity across cohorts comprising the discovery

(IGAP.noGERAD) and validation (GERAD) datasets may

introduce bias in the prediction modelling, we assessed hetero-
geneity between the UK, German and USA studies by means of

I2 values and chi-squared test for heterogeneity for each SNP,
as well as performed calibration analysis with Hosmer-

Lemeshow test [hoslem.test() function in R] for each regression
model which we run in the validation data. For the discovery

dataset we had only summary statistics for each SNP, which
were adjusted for population covariates prior to analyses per-

formed here.
We used as predictors a number of explanatory variables

including APOE-e4, APOE-e2, age, gender, polygenic score

based upon 20 genome-wide significant SNP proxies, and
polygenic score calculated using SNPs with Alzheimer’s disease

association P-values ranging from 0.0001 to 0.9 in the
IGAP.noGERAD sample (APOE and GWA study loci were

excluded; Supplementary Table 1). We assessed significance
of model improvements over APOE (e4 + e2) and over
GWA study proxies via DeLong’s method [roc.test() function

in R].
We performed similar analyses on imputed data however the

prediction accuracy using this dataset was marginally lower
due to noise introduced through a number of missing values

as a result of genotypes imputed with low certainty (results are
not shown). To test the sensitivity of our results to possible
bias due to age and population stratification, we ran the same

models in subsamples stratified by geographical region
(UK, USA and Germany), and age groups 560, 60–69,

70–79, 80–89 and 90+ years.

Results

Polygenic risk score analysis

In this study we investigated whether the polygenic score

alleles identified in one Alzheimer’s disease GWA study

were significantly enriched in the cases relative to the con-

trols of an independent Alzheimer’s disease dataset. Our

analysis revealed significant evidence for an overall enrich-

ment of the Alzheimer’s disease polygenic risk score alleles

of the IGAP.noGERAD data in the independent GERAS

(Harold et al., 2009) cohort of 3177 Alzheimer’s disease

cases and 7277 controls from the UK, Europe and USA

(Table 1). The pattern of the polygenic score association

was similar to those seen in studies of other complex dis-

eases shown to have a polygenic signal (International

Schizophrenia et al., 2009; Stergiakouli et al., 2012;

Heilmann et al., 2013; Michailidou et al., 2013). Our

most significant evidence for association was observed

when SNPs with a selection threshold (PT) of P4 0.5 in

the IGAP.noGERAD sample were included. The P-values

for a significant enrichment in the polygenic score ranged

from 3.9 � 10�20 to 4.9 � 10�26 dependent on the PT used

(Table 1). For all significant associations the B-coefficients

(Effects) were positive, indicating that a higher polygenic

score in the IGAP.noGERAD discovery dataset corresponds

to a higher score in the independent GERAD replication

dataset and provides evidence for a polygenic contribution

to the development of Alzheimer’s disease.

As the 538 363 independent SNPs that we used to iden-

tify Alzheimer’s disease polygenic risk score alleles included

those most significantly associated with the disease, it is

plausible that our results are artificially biased by SNPs

whose evidence for association is a consequence of linkage

disequilibrium with a known genome-wide significant

SNPs. To investigate this possibility we repeated our ana-

lysis using identical analysis thresholds but excluding all

5006 SNPs that, after linkage disequilibrium pruning,

were present at the 24 genomic regions previously reported

to be strongly associated with Alzheimer’s disease (Lambert

et al., 2013; Escott-Price et al., 2014). The regions were

defined as �500 kb of both sides of the GWA SNPs

(Lambert et al., 2013) or GWA genes (Escott-Price et al.,

2014) and between 44 400–46 500 kb on chromosome 19

for the APOE locus (Supplementary Table 1). Given that

each of these excluded regions is likely to contain at least

one true Alzheimer’s disease susceptibility allele, this

approach is highly conservative. Nevertheless, this analysis

again revealed significant evidence that individuals with

higher polygenic risk scores had greater probability of

Alzheimer’s disease, with our most significant result

P = 3.4 � 10�19 (Table 2). Moreover, we obtained analo-

gous results when we used an alternative method of linkage

disequilibrium pruning, which ignores the strength to

which SNPs are associated with Alzheimer’s disease, and

thus excludes SNPs from the 24 associated regions
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(Supplementary Table 2). These analyses suggest that our

findings are not dependent on either the previously identi-

fied susceptibility loci or the SNPs that are associated with

Alzheimer’s disease merely as a consequence of linkage dis-

equilibrium with the genome-wide significant loci.

Analysis of predictive accuracy

The identification of subjects at high risk for Alzheimer’s

disease is important for prognosis and early intervention,

identifying biomarkers and disease mechanisms. We used

logistic regression analysis to establish predictive values

(sensitivity, specificity, AUC, PPV, NPV) of genetic risk fac-

tors in a subset of GERADdata (3049 cases and 1554 con-

trols) for whom APOE genotype data were available. The

results of this analysis are summarized in Table 3. All

regression models’ P-values were highly significant

(P510�94). We also note that addition of the polygenic

score to the regression model has significantly improved all

regression models over and above APOE (e4 + e2) alone.

Inclusion of the polygenic score based upon proxies to

GWA studies significant SNPs improved the model by

P = 2.7 � 10�12 (Table 3). We have also tested model im-

provements over APOE + GWAS when added polygenic

score based upon less significant SNPs (Table 3). A nom-

inally significant improvement (P = 0.048) was observed

adding polygenic score constructed from 130 SNPs with

Alzheimer’s disease association P510�4. A clear change

was observed between adding polygenic score based on

genome-wide significant SNPs and SNPs with Alzheimer’s

disease association P5 0.05 (model improvement

P = 3.6 � 10�9), gradually improving with adding more

SNPs with P-values up to 0.5 (model improvement

P = 1.3 � 10�11).

The APOE-e4 allele is the strongest known genetic risk

factor for Alzheimer’s disease. In the presence of APOE-e4
alleles, the sensitivity was 0.59 the specificity 0.75 and the

AUC = 0.678 (95% CI = 0.66–0.69) (Table 3). Inclusion of

the numbers of APOE-e2 alleles in the logistic regression

model slightly increases all prediction accuracy values,

in particular, the AUC increased to 0.688 (95%

CI = 0.67–0.70). As expected, prediction accuracy was fur-

ther enhanced [AUC = 0.715 (95% CI = 0.70–0.73), model

improvement P = 2.7 � 10�12] when we added the genome

wide significant polygenic score variable based upon

proxies for the 20 genome-wide significant SNPs, where

the weights of the SNP risk alleles were identified from

the independent dataset IGAP.noGERAD (Fig. 1).

We further investigated whether the polygenic score

based on risk alleles of small effect identified in one study

(IGAP.noGERAD) were improving the prediction accuracy

in an independent dataset (GERAD). For this we used poly-

genic scores calculated excluding the known Alzheimer’s

disease associated regions (Supplementary Table 2).

The best prediction accuracy AUC = 0.745 (95%

CI = 0.73–0.79) was achieved when we included the poly-

genic score for SNPs with Alzheimer’s disease association

P-values50.5, with highly significant improvement over

APOE alone (P = 7.2 � 10�30) and over the APOE +

GWAS model (P = 1.3 � 10�11). As a result of logistic the

prediction probability values between 0 and 1 are provided

for each individual. Sensitivity and specificity (proportions

of correctly predicted cases and controls) depend on the

prediction probability threshold—a number between 0

and 1, which classifies all subjects into two groups ‘pre-

dicted cases’ and ‘predicted controls’. Clearly the lower

this threshold, the more subjects are classified as cases,

and therefore the more likely it predicts the majority of

actual cases correctly, i.e. sensitivity increases (and vice

versa for specificity). The commonly used (‘best’) approach

to identify this threshold is to find a compromise between

sensitivity and specificity by minimizing the difference be-

tween these two measures. The values of sensitivity and

specificity were about 0.69 when estimated with the mini-

mized difference probability threshold (MDT = 0.64).

The value AUC for the possible confounders such as sex,

age and principal components, was not excessive, ranged

Table 1 Results of polygenic score analysis based upon a set of independent SNPs (at r24 0.2)

pruned to retain those most significantly associated with the disease.

PT
a Effect SE P R2 NSNPs

0.01 0.283 0.0308 3.9 � 10�20 0.016 16 749

0.05 0.311 0.0308 5.9 � 10�24 0.019 61 552

0.1 0.321 0.0309 2.6 � 10�25 0.020 107 834

0.2 0.327 0.0309 3.6 � 10�26 0.021 185 737

0.3 0.317 0.0308 7.9 � 10�25 0.020 251 850

0.4 0.323 0.0308 1.0 � 10�25 0.020 308 780

0.5 0.327 0.0310 4.9 � 10�26 0.021 359 500

0.6 0.326 0.0310 6.2 � 10�26 0.021 404 626

0.7 0.325 0.0309 9.3 � 10�26 0.020 444 663

0.8 0.328 0.0310 4.1 � 10�26 0.021 480 271

0.9 0.323 0.0309 1.9 � 10�25 0.020 511 297

1 0.321 0.0309 3.0 � 10�25 0.020 538 362

aSelection threshold of ‘score’ SNPs taken from the IGAP.noGERAD discovery sample.

NSNPs = number of SNPs; SE = standard error.
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between 52–56% (Supplementary Table 3), reaching max-

imum for the model with age and principal components,

the latter indicating possible population stratification.

As age and sex have prediction value for Alzheimer’s

disease, it made sense to include them as predictors into

the model, rather than adjust for them. As expected, our

results show that inclusion of sex and age in the regression

model further improved the prediction accuracy

(AUC = 0.782) (Table 3 and Fig. 1).

The population stratification might inflate prediction ac-

curacy so we calculated the mean of heterogeneity I2

values, which was 13.8% and the proportion of heterogen-

eity nominally significant SNPs was 7%, indicating slight

inflation as compared to the nominal 5%. Table 3 also

presents Hosmer-Lemeshow’s test P-values for each regres-

sion model. All P-values are non-significant indicating that

the models are correctly specified.

To investigate possible population differences in the pre-

diction of Alzheimer’s disease risk, we looked at UK,

German and USA subjects separately. The pattern of pre-

dictive modelling results was similar to the main analyses

results in all strata (Supplementary Table 4). Interestingly,

the prediction in the USA strata was extremely good (the

best AUC = 0.95%). This might be due to the fact that the

majority of subjects (about 80%) in the training set were of

USA origin in contrast to 17% in the test set. We per-

formed the prediction modelling on the whole sample

excluding SNPs with heterogeneity P-value5 0.05. The re-

sults and conclusions were similar.

In the context of practical application, e.g. in experimen-

tal designs comparing cases with high or low polygenic risk

of Alzheimer’s disease, age has to be taken into account.

Supplementary Table 5 presents the results of the genetic

predictive modelling stratified by age groups. The results of

the stratified analyses show a similar pattern of prediction

accuracy. As before, the best accuracy in each stratum was

achieved when the numbers of APOE-e4, APOE-e2 alleles,

the polygenic score variable based upon proxies for the 20

genome-wide significant SNPs, and the polygenic score for

SNPs with Alzheimer’s disease association P-values5 0.5

were included as predictors. The AUC value ranged from

73% to 79%, with the highest in the 60–69 age group

(Supplementary Table 5). The best prediction might indi-

cate that this particular age group has the strongest

common genetic effect, with the younger age group (560

years) potentially due to Mendelian forms of the disorder,

and the older age groups confounded by general ageing

effects.

Another way to look at the utility of the polygenic score

as a predictor for Alzheimer’s disease is to exclude the

strongest predictor, namely the e4 allele, from the analysis.

There were 1242 cases and 1160 controls in the sample

without e4 allele. When looking at these individuals only,

the AUC was 65.0% when we included the polygenic

scores based upon proxies for the 20 genome-wide signifi-

cant SNPs and for SNPs with Alzheimer’s disease associ-

ation P-values5 0.5, increasing to 65.8% when the

number of e2 alleles was added as a predictor. Similar ac-

curacy was achieved (64.5% and 65.8%) when we ran the

analysis on the whole sample without e4 as a predictor.

Positive and negative predictive
values

Using sensitivity and specificity, a practitioner can make

statements such as ‘assuming that the individual has

Alzheimer’s disease, the test has accuracy 69%’ (here

69% is the sensitivity; Table 3.) However, this statement

might not be helpful for designing an experiment because,

for new samples, all that is known is the prediction. The

PPV answers the question ‘what is the probability that this

person has (or is incubating) Alzheimer’s disease?’ With

regard to the practical use of polygenic score in the

Table 2 Results of polygenic score analysis based upon a set of relatively independent SNPs (at

r24 0.2) pruned to retain those most significantly associated with the disease, excluding the

genome-wide associated loci

PT
a Effect SE P R2 NSNPs

0.01 0.154 0.0304 4.01 � 10�7 0.005 16 412

0.05 0.232 0.0305 2.50 � 10�14 0.011 60 750

0.1 0.256 0.0307 5.92 � 10�17 0.013 106 587

0.2 0.270 0.0307 1.23 � 10�18 0.014 183 808

0.3 0.263 0.0305 6.47 � 10�18 0.014 249 314

0.4 0.271 0.0306 7.26 � 10�19 0.014 305 741

0.5 0.275 0.0307 3.45 � 10�19 0.015 356 033

0.6 0.274 0.0307 4.66 � 10�19 0.015 400 785

0.7 0.273 0.0307 6.76 � 10�19 0.014 440 473

0.8 0.276 0.0308 2.93 � 10�19 0.015 475 769

0.9 0.271 0.0307 1.13 � 10�18 0.014 506 532

1 0.269 0.0307 1.67 � 10�18 0.014 533 356

aSelection threshold of ‘score’ SNPs taken from the IGAP.noGERAD discovery sample.

Exact positions of the excluded regions are given in Supplementary Table 1.
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identification of subjects at high and low risk for

Alzheimer’s disease, we investigated the prediction accuracy

in terms of PPV and NPV: the percentage of predicted pa-

tients who actually have the disease and the percentage of

predicted who are actually controls, respectively. The re-

sults of these analyses are shown in Table 4. In our

sample PPV reached 81% and NPV = 53% (see Table 4,

line corresponding to the model with APOE, GWAS and

SNPs with P40.5).

We recognize that the validating sample used here (3049

Alzheimer’s disease cases and 1554 controls) may not rep-

resent the range of samples with Alzheimer’s disease or

those in the early stage of Alzheimer’s disease. We have

therefore attempted to model potential scenarios with prac-

tical utility. Thus, we modelled samples in which 17% have

or are in the early stage of Alzheimer’s disease, as well as

33% and 50%. This provides an estimate only and would

need to be tested in appropriate sample populations.

A crucial point is that prevalence affects the predictive

value of any test. This means that the same diagnostic

test will have a different predictive accuracy according to

the clinical setting in which it is applied. With sensitivity

and specificity values at 69% (Table 3), as prevalence rises

from 17% (e.g. prevalence of Alzheimer’s disease among

75–84 year olds) to 33% (e.g. among those aged 85 + ),

PPV will rise from 31% to 52% (Table 4): a huge differ-

ence in the clinical interpretation of the same test result.

Furthermore, if the sample is enriched for Alzheimer’s dis-

ease cases, e.g. subjects are preselected for clinical trials on

the basis of deposition of amyloid plaques or have mild

cognitive impairment, with a high percentage estimated to

convert to Alzheimer’s disease (Yesavage et al., 2002). Thus

modelling with prevalence of 50%, will increase the PPV to

68% (Table 4), meaning that if the sample is enriched for

cases, then with help of polygenic score, 68% of the sample

will be correctly predicted as cases, as compared to 50% if

chosen at random. Importantly, we will also correctly pre-

dict 68% of controls as the negative predictive value in this

example is 0.684. The prediction accuracy can be enhanced

by including individuals with extreme polygenic score cut-

offs. We looked at deciles of the polygenic score distribu-

tion, estimated the range of predictive probabilities per

decile and looked at the proportion of cases (and controls)

correctly predicted. Figure 2 shows the results of this ana-

lysis. According to Fig. 2 our predictive modelling is fairly

accurate (cf. black circle points with the box-plots in Fig.

2). The minimum polygenic score in the last decile is 1.32.

To demonstrate utility of polygenic score we looked at

most extreme polygenic score cut-offs and estimated PPV

and NPV values, adjusted for (i) 17% lifetime risk of

Alzheimer’s disease, approximately representing a general

population at age 60–65, who will potentially get

Alzheimer’s disease later; (ii) 33% prevalence; and (iii)

50% prevalence, representing a sample with high percent-

age subjects, estimated to convert to Alzheimer’s disease

(Supplementary Tables 6 and 7). Adjusting for 17% preva-

lence, PPV and NPV values were PPV = 36%, NPV = 94%

and PPV = 66% and NPV = 93% for polygenic score 42.3

and polygenic score 42.4, respectively. Increasing

prevalence to 33% and 50% increased the PPV values to

82% and 90%, respectively (Supplementary Table 6), for

subjects with normalized total polygenic score 42.4. Of

course, these predictive values are just an indication of

the possible achievable accuracy, as their estimations were

based upon very small numbers (43 cases and four controls

with polygenic score 42.3; and 32 cases and one control

with polygenic score 42.4). Similar estimations were made

for subjects with very low polygenic score, aiming to clas-

sify controls with a high precision (Supplementary Table 6).

Discussion
The molecular genetic data reported in this study provide

strong support for a large polygenic contribution to the

overall heritable risk of Alzheimer’s disease. This implies

that the genetic architecture of Alzheimer’s disease includes

many common variants of small effect that are likely to

reflect a large number of susceptibility genes and a complex

set of biological pathways related to disease.

First, we have shown that including genetic variants to a

P-value4 0.5, as well as age and sex, produces the best

AUC = 78.2%. Second, we show that including full poly-

genic score (P5 0.5) significantly improves AUC over

APOE + 20 proxies to genome-wide significant SNPs

(P = 1.3 � 10�11) and APOE alone (P = 7.2 � 10�30).

Third, our data also indicate that prediction can be further

improved by limiting sample selection polygenic extremes.

However, it must be noted that our case-control dataset

(3049 Alzheimer’s disease cases and 1554 controls) does

Figure 1 ROC curves for predictive models with different

predictors for risk of Alzheimer’s disease. GWAS = GWA

study; PS = polygenic score.
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not reflect other populations in which different proportions

of Alzheimer’s disease cases or those at the early stage of

the disease. We therefore attempted to model other data

samples that may be of use. We modelled 17% of caseness

reflecting prevalence of Alzheimer’s disease at ages 75–84

years, or in those possibly incubating Alzheimer’s disease at

an early age range of 60–65 years. We observed that using

more extreme polygenic scores, we increased the predictive

value from 31% to 36% and almost doubled (66%) for a

more extreme polygenic score cut-off. We also estimated

PPV and NPV at 33% and 50% of caseness. At 33% case-

ness adding polygenic score estimated to increase PPV to

52% in the whole range of polygenic score and up to 82%

for more extreme cut-off, thus indicating that polygenic

scores have utility alongside other predictors of

Alzheimer’s disease in a variety of experimental designs

including: preventative clinical trials, the selection of

induced pluripotent stem cell lines to model Alzheimer’s

disease, and the investigation of biomarkers throughout

disease development. However, these are estimates extrapo-

lated from our data and need to be tested in actual popu-

lation samples.

The Alzheimer’s disease polygenic score alleles identified in

the GERAD cohort are not significantly enriched (minimum

P = 0.14) in an independent GWA study for Parkinson’s

disease (Moskvina et al., 2013) indicating that the identified

polygenic component of Alzheimer’s disease is disease-

specific. Our results are unlikely to be due to population

stratification, although we observe greater predictive accur-

acy in samples enriched for individuals from the same popu-

lation in both the discovery and validating dataset

(AUC = 95% in subset of USA subjects used for validation).

Further studies are required if we are to progress from

the knowledge that there is a polygenic contribution to

Alzheimer’s disease, to understanding the specific genetic

factors that comprise the polygenic component. Increasing

the discovery sample size will allow more loci with increas-

ingly small individual effect sizes to pass the threshold of

genome-wide significance, and should substantially refine

Table 4 Positive and negative predictive values, adjusted for prevalence of Alzheimer’s disease in different risk drops

for Alzheimer’s disease.

In our sample 17% prevalence 33% prevalence 50% prevalence

(age 75–84)a (age 85 + )a (MCI)b

Model PPV NPV PPV NPV PPV NPV PPV NPV

e4 0.821 0.483 0.273 0.919 0.474 0.826 0.647 0.700

e4 + e2 0.821 0.483 0.273 0.919 0.474 0.826 0.647 0.700

e4 + e2 + 20 GWAS SNPs + PS P5 0.0001 0.796 0.504 0.290 0.907 0.496 0.802 0.666 0.666

e4 + e2 + 20 GWAS SNPs + PS P5 0.001 0.798 0.507 0.292 0.908 0.499 0.804 0.669 0.669

e4 + e2 + 20 GWAS SNPs + PS P5 0.01 0.798 0.506 0.292 0.908 0.498 0.803 0.668 0.668

e4 + e2 + 20 GWAS SNPs + PS P5 0.05 0.801 0.511 0.296 0.909 0.502 0.806 0.672 0.672

e4 + e2 + 20 GWAS SNPs + PS P5 0.1 0.804 0.516 0.300 0.911 0.508 0.810 0.677 0.677

e4 + e2 + 20 GWAS SNPs + PS P5 0.2 0.808 0.522 0.305 0.913 0.514 0.813 0.682 0.682

e4 + e2 + 20 GWAS SNPs + PS P5 0.3 0.808 0.523 0.306 0.913 0.514 0.814 0.683 0.683

e4 + e2 + 20 GWAS SNPs + PS P5 0.4 0.809 0.524 0.307 0.913 0.515 0.814 0.683 0.683

e4 + e2 + 20 GWAS SNPs + PS P5 0.5 0.809 0.525 0.307 0.914 0.516 0.815 0.684 0.684

e4 + e2 + 20 GWAS SNPs + PS P5 0.6 0.811 0.527 0.309 0.914 0.518 0.816 0.686 0.686

e4 + e2 + 20 GWAS SNPs + PS P5 0.7 0.810 0.526 0.309 0.914 0.518 0.816 0.685 0.685

e4 + e2 + 20 GWAS SNPs + PS P5 0.8 0.810 0.525 0.308 0.914 0.517 0.815 0.685 0.685

e4 + e2 + 20 GWAS SNPs + PS P5 0.9 0.809 0.523 0.306 0.913 0.515 0.814 0.683 0.683

aHebert et al. (2013).
bYesavage et al. (2002).

PS = polygenic score; GWAS = GWA study; MCI = mild cognitive impairment.

Figure 2 Deciles of the polygenic score distribution with

estimated range of predictive probabilities per decile (box-

plots) and the proportion of cases (and controls) correctly

predicted. PS = polygenic score.
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the polygenic scores derived here. Moreover, as we have

previously shown, using approaches such as gene pathway

analyses it is possible to use the captured polygenic signal

and identify genes or biological systems relevant to

Alzheimer’s disease (International Genomics of

Alzheimer’s Disease, 2015).

It is possible that our findings are influenced by rare

Alzheimer’s disease susceptibility variants that are in link-

age disequilibrium with the common alleles analysed in this

study. The ongoing efforts of studies performing exome

and whole genome sequencing in large numbers of

Alzheimer’s disease case–control cohorts will allow us to

establish the haplotype structure of common and rare al-

leles an in turn, to understand which loci are subject to

‘synthetic association’ (Dickson et al., 2010). To date, we

have not observed a significant excess of rare copy number

variants in cases in our GERAD sample and did not repli-

cate findings of previous Alzheimer’s disease copy number

variant studies (Chapman et al., 2013). We also found no

excess of homozygous tracts in Alzheimer’s disease cases

compared to controls and no individual run of homozygos-

ity showed association to Alzheimer’s disease in the

GERAD sample (Sims et al., 2011). However, as previously

demonstrated in other complex diseases (Purcell et al.,

2014), future polygenic score analysis of variants identified

by exome/genome sequencing are expected to further

inform our understanding of the genetic underpinnings of

Alzheimer’s disease.

In conclusion, the derived polygenic scores have demon-

strated utility for calculating an individual level genetic risk

profile that can predict disease development. Measures of

polygenic burden could prove useful in distinguishing

patients with Alzheimer’s disease whose disease liability is

most likely to carry a large or small genetic component.

This utility of the developed polygenic score is increased

among subjects aged 60–69, which is a desirable target

group for identification and preventative intervention of

Alzheimer’s disease. Identifying these individuals would

benefit study recruitment into clinical trials and could fa-

cilitate a better understanding of how gene-gene and gene-

environment interactions increase risk for Alzheimer’s

disease.
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André Lacour14, Dmitriy Drichel14, Hendrik van den

Bussche15, Isabella Heuser16, Johannes Kornhuber17, Jens

Wiltfang18, Martin Dichgans19,20, Lutz Frölich21, Harald
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