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Early role of vascular dysregulation on late-onset
Alzheimer’s disease based on multifactorial
data-driven analysis
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Multifactorial mechanisms underlying late-onset Alzheimer’s disease (LOAD) are poorly

characterized from an integrative perspective. Here spatiotemporal alterations in brain

amyloid-b deposition, metabolism, vascular, functional activity at rest, structural properties,

cognitive integrity and peripheral proteins levels are characterized in relation to LOAD

progression. We analyse over 7,700 brain images and tens of plasma and cerebrospinal

fluid biomarkers from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Through a

multifactorial data-driven analysis, we obtain dynamic LOAD–abnormality indices for all

biomarkers, and a tentative temporal ordering of disease progression. Imaging results suggest

that intra-brain vascular dysregulation is an early pathological event during disease

development. Cognitive decline is noticeable from initial LOAD stages, suggesting early

memory deficit associated with the primary disease factors. High abnormality levels are also

observed for specific proteins associated with the vascular system’s integrity. Although still

subjected to the sensitivity of the algorithms and biomarkers employed, our results might

contribute to the development of preventive therapeutic interventions.
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L
ate-onset Alzheimer’s disease (LOAD), the most common
form of human dementia, is not causally associated with
any unique neuropathological mechanism but rather with

multiple concomitant factors. The high complexity of the
mechanisms underlying the disease and the current lack of
quantitative integrative models comparing them make our
understanding of LOAD outcome/progression and the develop-
ment of effective disease-modifying therapeutic agents difficult.

Historically, different hypotheses for the origin of the disease
have been proposed and the most consistent are still the subject of
scientific debate1–3. The vascular dysregulation hypothesis, dating
from the early 1900s, proposes alterations to the balance between
the blood flow substrate delivery and the neuronal/glial energy
demands, which lead to brain dysfunction and disease3–5.
Alternatively, amyloid-b (Ab) and tau misfolded proteins are
thought to have a causal role on the cascade of cognitive/clinical
events leading to LOAD2,6. The metabolic dysregulation
hypothesis postulates impaired compensatory mechanisms
associated with neuronal/glial energy production7. More
recently, neuronal activity-dependent degeneration mechanisms
have been postulated to explain the pathology as a consequence of
neuronal/synaptic hyperactivity that expands a ‘toxic’ effect on
surrounding connected neurons/synapses1,8. Tissular neurode-
generation and associated grey matter atrophy are other common
hallmarks of disease progression, although their causes and roles
are not totally understood, being generally thought of as a
consequence of previous neuropathological factors.

Despite their importance, models that define a multifactorial
LOAD pathogenesis9–14 have generally been based on limited
data that do not cover the multiplicity of possible biological
factors that influence disease progression. For instance, in Jack
et al.10, one of the most cited models of LOAD progression,
the vascular dysregulation and the functional impairment
components are ignored, even when these factors were
historically and consistently associated with the disease’s
underlying mechanisms1,3–5,8. Motivated by this lack of an
integrative LOAD description, here we propose a multifactorial
data-driven analysis (MFDDA) approach, wherein alteration
levels of Ab misfolded proteins, metabolism, vascular regulation,
functional activity at rest, structural tissue properties and protein
levels are spatiotemporally characterized in relation to LOAD
progression.

We analysed over 7,700 multimodality brain images and tens
of different plasma and cerebrospinal fluid (CSF) biomarkers
from 1,171 healthy and diseased subjects. Comparing the
characteristic trajectory of each imaging or biospecimen bio-
marker in pathologic versus healthy aging, our data-driven
approach revealed a multifactorial temporal ordering of disease
progression. According to this ordering, and under the assump-
tion that the analysed biomarkers represent specific physiological
processes, vascular dysregulation might be the earliest/strongest
brain pathologic factor associated with LOAD development,
followed in order by Ab deposition, glucose metabolism
dysregulation, functional impairment, and grey matter atrophy.
Symptoms of cognitive decline were observed from initial LOAD
stages, suggesting a continuous memory deterioration caused by
subtle pathological alterations in the primary disease factors (for
example, vascular/metabolic dysregulation and Ab effects). Our
plasma and CSF results suggest the presence of early peripheral
vascular alterations in the disease, and reveal new evidence about
inflammatory activation, insulin resistance and associated lipid
metabolism dysfunction. Finally, we highlight current limitations
and challenges associated with the multifactorial modelling of
LOAD. In addition to improving our understanding of LOAD,
the methodology proposed in this study could be used for the
analysis of other devastating human neurodegenerative disorders.

Results
Capturing abnormal biomarker trajectories in unhealthy aging.
We evaluated Ab misfolded proteins, glucose metabolism,
cerebral blood flow, functional activity and/or structural tissue
brain patterns in a cohort of 1,171 subjects from the ADNI
database (Methods section, Study participants; Supplementary
Table 1). These five biological factors were mapped in vivo
using corresponding neuroimaging techniques (Fig. 1a;
Methods section, Data Description and Processing): Florbetapir
positron emission tomography (PET; for Ab deposition),
Fluorodeoxyglucose PET (for glucose metabolism), Arterial Spin
Labeling (ASL, for cerebral blood flow), resting functional
magnetic resonance imaging (MRI; for neuronal activity at rest)
and structural MRI (for structural tissular properties). Each
participant was previously diagnosed at each visit as healthy
control (HC), early mild cognitive impairment (EMCI), late mild
cognitive impairment (LMCI) or probable Alzheimer’s disease
patient (LOAD). In addition, participants were cognitively and
genetically characterized (for example, according to the Mini
Mental State Examination (MMSE) or to the number of apoee4
allele copies, respectively). See Supplementary Table 1 for a
detailed sample description across all data modalities. For each
mentioned biological factor, representative regional values were
calculated for 78 regions covering all the grey matter15. See
Methods section (image processing subsections) for a description
of evaluated multimodality imaging measurements.

We proceeded to reconstruct the characteristic trajectory of
each biological factor at each brain region during healthy or
unhealthy aging. For this, different aging-mediated disease
trajectories were generated using a generative spatiotemporal
model (Fig. 1b–d; MFDDA, Methods section and Supplementary
Note 1), covering all possible LOAD-associated clinical state
transitions during a 30-year period of aging (from 40 to 70 years
of age). Clinical transitions considered were: HC to HC, HC to
EMCI, HC to LMCI and HC to LOAD state (Fig. 1c). Next,
spatiotemporal abnormality trajectories for each specific bio-
marker were obtained comparing the mean characteristic curve
for each diseased clinical transition with the corresponding curve
for the healthy aging transition (Fig. 2a–e; MFDDA, Methods
section). In addition, these trajectories were used to calculate a
total LOAD–abnormality index for each biological factor and
brain region, that is, the normalized area under the obtained
abnormality curve (MFDDA, Methods section).

This generative procedure was repeated 500 times via a
bootstrapping technique, which improved the robustness of the
estimations and allowed to control the stability of the results.
Finally, each factor-regional trajectory and associated abnorm-
ality scores were calculated as the mean of all the bootstrap
outcomes. Similarly, aging/disease characteristic trajectories and
corresponding abnormality trajectories/scores were generated for
MMSE, included as a measure of symptoms severity13, and for
146 plasma and 87 CSF potential biomarkers (Supplementary
Tables 2 and 3). For further details see Fig. 1, Methods section
(MFDDA subsection) and Supplementary Note 1.

Multifactorial biomarker ordering in LOAD progression.
Identification of the sequence of pathological events underlying
LOAD progression is still a major challenge (Fig. 2). In the last
decade, different models have been proposed9–14,16. These studies
have contributed to the understanding of the ordering in
biomarker abnormalities associated with LOAD, using different
observational9,10 or data-driven perspectives11–14. In addition to
being less sensitive to subjective criteria, data-driven models
present the advantage of being directly applicable to different
diseases. For example, in refs 11,12 a probabilistic event-based
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Figure 1 | Representation of the multifactorial data-driven generative approach. (a) Brain multimodality images and plasma/CSF biomarkers.

(b) Regional patterns for Ab deposition across the entire sample. (c) Reconstructed regional Ab characteristic trajectories for HC to LOAD (left) and

HC to HC (right) clinical transitions, over a 30-year aging period. (d) Regional (left) and total (right) Ab abnormality trajectories during the age-mediated

clinical transitions.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11934 ARTICLE

NATURE COMMUNICATIONS | 7:11934 | DOI: 10.1038/ncomms11934 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


model is applied to Alzheimer’s and Huntington’s cohorts,
providing disease-specific pathologic event orderings and
individual disease states, without the assumption of a priori
event ordering or requiring an initial grouping of the patients into
clinical stages.

However, in general, previous models of LOAD progression
considered an insufficient number of interrelated neuro-
pathological factors and/or brain areas. For example, it is
common to find multimodal analyses of grey matter atrophy,
Ab deposition and/or functional impairment, in which vascular
dysregulation is not included (see refs 1,9,10,16). In other
studies14,17, conclusions have been based only on the
observation of specific brain areas, those presumably more
affected in advanced LOAD states (for example, hippocampal,
ventricles and entorhinal regions). In refs 11,12, the analyses were

limited to structural, cognitive, Ab classification in negative and
positive subjects, and/or a few peripheral protein biomarkers
(CSF Ab1–42, tau and phosphorylated tau (ptau)); brain vascular,
functional and metabolic components, as well as other relevant
peripheral protein biomarkers, were not considered. See the
Discussion section for further description of previous models.
Motivated by this lack of integrative LOAD models, here we
aimed to identify a comprehensive multifactorial biomarker
ordering in LOAD progression based on the spatiotemporal
abnormality levels obtained previously for the whole HC to
LOAD clinical transition.

First, we did a clinical pairwise comparison between all
imaging biomarkers, based on their reconstructed spatiotemporal
abnormalities. For each pair of factors (imaging modalities), and
for each brain region and time point, a value of 1 was assigned to
the factor with the higher abnormality value. This comparison
was repeated across all brain regions and time points, and the
results were summarized in a 5� 5 hierarchical matrix (Fig. 3a).
Each element i,j (i,j¼ 1..5) of this hierarchical matrix reflects the
percentage of regions and time points at which the imaging
modality j exceeded in abnormality magnitude the modality i
during the HC to LOAD clinical transition. The columns of the
matrix were reordered keeping from left to right the factors
predominating in effect levels. We observed a remarkable
predominance of the vascular dysregulation component over
the other pathologic biomarkers (Fig. 3a). In total, the vascular
factor was B80% more abnormal across all brain regions and
time points than were the other factors considered. It was
followed in spatiotemporal abnormality levels by Ab deposition,
metabolic dysfunction, functional impairment and grey matter
atrophy.

Next, to create and compare factor-specific abnormality curves
during LOAD development, for each biological factor we
calculated the average abnormality curve across all brain regions
and, after normalizing by the maximum abnormality value,
depicted together the final average curves (Fig. 3b). In the
averaging calculation, each region’s multifactorial abnormality
curves were weighted according to the region’s relevance during
the pathological progression. For this, we assumed the sum of
each region’s abnormality levels across all biological factors to be
a local multifactorial measure of vulnerability to the disease
(Fig. 4). With the purpose of also analysing symptoms severity
and peripheral protein alterations as a function of disease
progression, we included in our multifactorial analysis the
abnormality trajectory obtained for MMSE and for three
commonly referenced CSF proteins (Ab1–42, tau and ptau10).
Again, we observed (Fig. 3b) a higher abnormality magnitude for
the vascular component, which exceeded the alterations in the
other factors. Consistent with the previous hierarchical results
(Fig. 3a), the vascular dysregulation was followed in abnormality
magnitude by Ab deposition, metabolic dysfunction, functional
impairment and grey matter atrophy. We noticed similar
abnormality levels for Ab deposition, glucose metabolism and
neuronal function at the early stages of the disease. However,
these three factors diverged in abnormality levels with disease
progression, explaining the global differences observed in the
hierarchical matrix (Fig. 3a), and coinciding also with a ‘slower’
but consistent increase in structural atrophy. Around the last
phase of the LMCI period, the structural atrophy becomes more
abnormal (in terms of biomarker distance to the healthy state)
than the functional impairment. In addition, we observed
symptoms of memory impairment from very early disease
stages. Contrary to what previous observational models
proposed9,10, alterations in memory preceded the abnormalities
observed for different molecular biomarkers (for example, CSF
Ab1–42, tau and ptau proteins). This suggests that cognitive
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decline associated with LOAD is not a final output of large brain
changes, but a continuous consequence of subtle pathological
alterations in primary disease factors (for example, vascular
dysregulation and Ab effects).

See Discussion section for further biological interpretation of
these results.

Peripheral vascular and inflammatory alterations. Proteins
execute central functions in living organisms and their peripheral
concentrations/interactions are strongly associated with indivi-
dual health conditions. This makes the analysis of peripheral
protein dynamics a crucial step towards understanding the bio-
logical mechanisms underlying aging and associated neurode-
generative diseases. Particularly, peripheral plasma and CSF
protein measurements have been suggested as promising bio-
markers of pre-symptomatic pathological processes underlying
LOAD18,19. Here similar to the imaging biomarkers, we aimed to
explore possible abnormalities in plasma and CSF proteins
associated with LOAD progression. For this, 146 plasma and 87
CSF protein biomarkers were analysed and sorted according to
their obtained LOAD–abnormality indices (Fig. 5; Supplementary
Tables 2 and 3).

Heart-type fatty acid-binding protein (hFABP) was identified
as the most abnormal CSF biospecimen (Fig. 5a,b, Supplementary
Table 3). CSF hFABP levels are known to be significantly altered
in LOAD patients20, having a high predictive power of the
progression from MCI to LOAD states20,21. The CSF hFABP level
is significantly associated with longitudinal atrophy of the
entorhinal cortex and other LOAD-vulnerable neuroanatomical
regions22, and is also considered a sensitive biomarker of specific
cardiovascular disorders23. Cortisol and Apolipoprotein A
(Apo A) were identified as the other most abnormal CSF
biospecimens (Fig. 5a). Cortisol is a relevant risk factor for stress,
glucose and cardiovascular dysregulation24, which has been
strongly linked to early phases of LOAD progression and to the
hyperactivity of the hypothalamic-pituitary-adrenal axis25. Apo A
is a high-density lipoprotein with a central role in lipid
metabolism. Peripheral Apo A concentration is strongly
associated with the integrity of the vascular system and the risk
of developing cardiovascular disorders26. In addition, we
observed high abnormality levels for other CSF measurements
previously associated with LOAD progression, for example, tau,
ptau, ferritin and Ab1–42 (scored in the total LOAD–abnormality
positions 4, 6, 10 and 13, respectively, out of all of the 87
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considered CSF biomarkers). However, and contrary to what
has been suggested by previous LOAD models9,10 (Fig. 6a),
alterations observed in Ab1-42 proteins were considerably lower
than those observed for other CSF proteins (for example, hFBAP,
cortisol and Apo A, with approximately a twofold higher average
abnormality level for these latest descriptors). This effect was
consistent from early to advanced disease states, which might
suggest that hFBAP, cortisol and Apo A protein levels in the CSF
could be earlier LOAD biomarkers than Ab1–42 concentration.

Among all of the studied plasma biospecimens, interferon-g-
induced protein 10 (IP-10) presented the highest abnormality
levels (Figs 5a and 6b, Supplementary Table 2). Alterations in
plasma IP-10 reflect peripheral inflammation processes, which are
a characteristic feature in aging and associated neurodegenerative
disorders27. Among other functions, IP-10 is a strong modulator
of angiogenesis28, which has a key role in poor vascularization
and abnormal vasculature disorders29. IP-10 was followed in total
abnormality levels by pregnancy-associated plasma protein A
(PAPP-A), a predictor of adverse vascular events, including high
risk of heart infarction30. Total and intact proinsulin followed
IP-10 and PAPP-A in plasma abnormality levels. Proinsulin is the
main precursor of insulin (scored at position 10 out of all the 146
plasma biomarkers). The consistent alterations of insulin and
associated proteins in LOAD, and the presence of common
cellular responses and pathogenesis, have motivated the
classification of this disorder as a form of type III diabetes31.
Peripheral insulin is suggested to enter the brain via a saturation
mechanism involving the blood–brain barrier (BBB)32.
Alterations in BBB permeability, which recently have been
observed at early stages of LOAD33, might be associated with
alterations in brain insulin resistance34. Moreover, peripheral and
brain insulin alterations may alter the BBB transport of amino
acids and drugs32, as well as induce changes in brain glucose,
Ab and ptau regulations35. Glutathione S-transferase alpha and
plasma matrix metalloproteinase 1 (MMP1) proteins were also
identified with high abnormality levels. Glutathione S-transferase

alpha alterations are strongly associated with oxidative stress36,
which is caused by the age-dependent imbalance between the
generation and detoxification of reactive oxygen and nitrogen
species37. Among other relevant pathogenic functions, oxidative
stress constitutes a regular pathway for different brain
mechanisms leading to BBB dysfunction38. Brain MMP1
concentrations have been found to be significantly elevated in
LOAD subjects39. Matrix metalloproteinase alterations are
thought to be linked to neuroinflammatory processes40,41 and
BBB dysfunction39,41. In summary, changes of these plasma
biomarkers suggest an early alteration of the peripheral vascular
system during LOAD progression, as well as allude to other
relevant pathologic mechanisms (for example, inflammatory
hyperactivation).

Discussion
Neurodegenerative disorders are the consequence of aging-
associated multifactorial biological dysfunction. Sophisticated
modelling of spatiotemporal abnormalities associated with LOAD
progression is a crucial step towards the understanding of the
pathological mechanisms underlying this disease, and possibly
contributing to the development of effective, disease-modifying
therapies. Here we reconstructed LOAD–abnormality trajectories
for multiple in vivo brain and peripheral biological descriptors.
Under the assumption that these biomarkers represent
specific physiological processes, we obtained, for the first time
to our knowledge, an integrative data-driven model of LOAD
progression. In general, our results suggest the role of vascular
dysregulation on the early cascade of events associated with the
disease’s progression (Figs 3–6, Supplementary Tables 2 and 3).

Due to the increasing high prevalence of LOAD and other
neurodegenerative diseases, it is imperative to define realistic
biomarker-based models of disease progression42. Compared with
traditional observational disease models9,10 (see Fig. 6 for a
comparison with our results), data-driven models are less
susceptible to subjective expert criteria, as the conclusions are
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dictated by real data values11–14,17. Also, and importantly, data-
driven analyses allow for adding and interrelating large amounts
of diverse/complementary data (see refs 14,17). For example, in
this study we summarized in a comprehensive framework the
information contained in five different brain imaging modalities

and tens of peripheral biospecimens. Previous generative models
of LOAD progression were notably valuable for understanding
the underlying pathological mechanisms11–13,43,44. These models
offered spatiotemporal descriptions of the amyloid, metabolic
and/or structural changes associated with LOAD. Here we
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Figure 5 | Total CSF and plasma biomarkers abnormality levels associated with LOAD progression. Total CSF (a) and plasma (b) biomarkers

abnormality levels associated with LOAD progression. For detailed lists of biospecimens and the obtained abnormality values for intermediate disease

states, see Supplementary Tables 2 and 3.
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extended such models to capture disease-related changes in other
relevant imaging (that is, vascular, functional) and protein (that
is, plasma, CSF) descriptors. This broad extension allowed us to
obtain an integrative multifactorial description of the disease’s
progression, characterizing significant pathological alterations
from the molecular to the macroscopic scales. A quantitative
comparison between the mentioned data-driven models11–14,17 is
still missing. Due to its importance for recognizing/summarizing
methodological differences and to reach a deeper consensus about
LOAD progression, it will be among the objectives of our future
research.

The comparison between unhealthy and healthy aging and the
generation of temporal abnormality trajectories are crucial steps
in our progression analysis. First, time plays a central role in the
causal cascade of events that contribute to adverse clinical
symptoms. Also, progressive neurodegenerative diseases can
temporally coexist with non-pathological aging effects, making
age a major confounding factor in biomarker examinations45.
Findings obtained at a given cross-sectional point do not
necessarily represent the dynamics of abnormal events
associated with a large pathological progression, neither are
they associated with time-dependent multifactorial pathological
interrelations. Thus, in addition to its multifactorial attribute, the
temporal aspect of the proposed generative analysis implies key
advantages over traditional neurodegenerative cross-sectional
studies. Methodologically, this study provides important
contributions towards the integration of multi-modal data sets
(for example, bridging neuroimaging and molecular fields) and
its application in the study of aging and neurodegenerative
disorders.

The causal role of vascular dysregulation on LOAD has been
suggested from the beginning of the 20th century (for a recent
review, see ref. 3). Although largely undervalued under the
rise of other recent hypotheses (for example, the amyloid
cascade hypothesis), a growing body of evidence supports the
idea that vascular dysregulation is a major risk factor for
LOAD development3–5. For instance, a significant age-dependent
BBB permeability breakdown, that correlates with cognitive
dysfunction, has been observed in the human hippocampus33.

This aging effect is thought to have a key impact on
BBB-mediated misfolded protein clearance and deposition, and
consequently on associated misfolded protein toxic effects. In line
with this, our results (Figs 3–6, Supplementary Tables 2 and 3)
suggest that vascular dysregulation is an early pathological event
during disease development, followed in biomarker changing
levels by Ab deposition, metabolic dysfunction, functional
impairment and structural atrophy. Although our MFDDA
does not reveal causal pathologic interactions, concordant
evidence suggests that in LOAD Ab deposition is mainly
caused by a deficiency in the Ab clearance system rather than
by an Ab overproduction43,46, whereas Ab clearance is associated
with the vascular system’s integrity47–49. Ab efflux across the BBB
sequestrates around 60% of the brain’s Ab proteins48. At the
same time, Ab has vascular destructive activity, making the
cerebrovasculature a primary target for Ab toxicity50. Also, Ab is
thought to have a negative impact on mitochondrial function,
which consequently may increase reactive oxygen species (ROS)
production and reduce mitochondrial Ab clearance, in a
continuous feed-forward mechanism51. While a decrease in
energy availability may affect cellular activity and lead to brain
functional impairment, the neurodegenerative progression may
decrease glucose metabolism because of the reduced synaptic
energy needs52. All together, vascular dysregulation, Ab toxicity,
failure in cellular energy demands (that is, hypometabolism) and
functional toxicity may cause neuronal/glial cell death (that is,
structural atrophy) and cognitive decline in a continuous
degenerative cycle.

Importantly, multifactorial pathological interactions are not
restricted to local/regional levels. From the microscopic to the
macroscopic scales, multimodal brain connections can also be a
conduit for disease spreading mechanisms (for review see ref. 52).
In addition to contributing to the intercellular transference
of factor-specific abnormalities (e.g. propagation of neuronal/
synaptic toxicity across anatomical/functional connections),
strong relationships persist among the different forms of brain
connectivity. For example, the vascular system supplies oxygen,
glucose and other nutrients, and clears away deoxygenated
blood and metabolic products, having a direct impact on the
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the metabolic/structural and memory biomarkers, however our results suggest that these proteins were not the strongest altered CSF proteins during

disease progression (for example, plasma IP-10, PAPP-A and total proinsulin, and CSF hFABP, cortisol and Apo A, showed higher sensitivity) while imaging

and memory biomarkers appeared consistently as earlier biomarkers (see Results section, and Supplementary Tables 2 and 3); (3) in a, abnormalities in

cognitive decline are only detectable at advanced abnormality levels for the considered biological biomarkers. In contrast, in b, alterations in cognition are

observable in parallel with changes in the primary disease factors (for example, vascular/metabolic dysfunction and Ab deposition) and exceed in

magnitude alterations observed for CSF Ab1�42, tau and ptau.
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brain’s functional/metabolic activity53. However, in a feedback
relationship, drastic changes in functional/metabolic activities can
notably modulate brain vascular networks54. This connectivity-
mediated effect can explain spatial mismatches between factor
abnormalities observed during disease progression. For example,
while regional metabolic alterations in LOAD have been found to
follow Ab deposition in many brain regions55, the remaining
spatial mismatch between hypometabolism and Ab binding
could be explained by functional connections to Ab deposition
areas56,57.

In addition to highlighting possible peripheral vascular
and inflammatory alterations during LOAD progression, our
plasma and CSF analysis suggests possible mechanisms
contributing to such dysregulations. Peripheral insulin resistance,
inflammatory and lipid/fatty acid metabolism alterations,
supported by the observed high proinsulin, IP-10, hFABP and
Apo A abnormalities, were some of the main pathological
mechanisms suggested by the proteomics findings. Some of these
have been previously associated with vascular/metabolic integrity
and neurodegenerative progression3,31,34,35. Potentially, they
might be reflecting the cascade of multifactorial pathological
events conducive to LOAD. However, as discussed below, we
should be cautious about the interpretation of these findings,
since our analysis does not reveal direct causal relationships
among the considered biomarkers, and consequently, neither
among their corresponding biological factors.

In general, these results could contribute to the development of
efficient, cost-effective, therapeutic interventions. The proposed
MFDDA could be employed to enrich clinical trial populations by
allowing for selective enrolment of subjects at a particular
pathological disease transition. In this sense, the availability of
characteristic abnormality trajectories for different biomarkers
can help to evaluate if a given subject with a specific demographic
profile is closest (in terms of biomarkers abnormalities) to one
(for example, HC to EMCI) or another possible (for example,
LMCI to LOAD) clinical transition. The multivariate distances to
the reconstructed characteristic trajectories could represent useful
quantitative indices of individual disease transitions. Moreover,
and importantly, this model could be employed as an
accurate quantitative descriptor of drug response, characterizing
and predicting future deviations from characteristic disease
trajectories generated with and without considering drug effects.
The study of patients under a specific medication could allow to
obtain biomarker trajectories as a function of age, disease state
and medication levels. When a new patient would be analysed,
consistent deviations from a specific trajectory and/or closeness to
others could be reflecting how well that particular patient is
responding to therapy.

In line with previous models of LOAD progression9–13, a
strong assumption in our study is that the analysed biomarkers
precisely reflect specific pathophysiological processes. Qualitative
and data-driven models depend on how realistically the available
observations represent the underlying biological processes.
Although grey matter density and atrophy measurements,
obtained with structural MRI techniques, are commonly
used to characterize structural brain properties, results and
interpretations depend on how accurately the used MRI
techniques reflect the real tissue properties and also under
which spatial scales these measurements are precise. Similarly,
current ASL and PET techniques still offer a limited
characterization of the vascular and metabolic/Ab brain
properties. Consequently, it is important to exert caution about
the observed biomarkers ordering with disease progression.
Although the obtained abnormality trajectories may be
reflecting a tentative ordering in which pathophysiological
events occur, our results should be interpreted more in terms of

biomarker sensitivity to disease progression than in terms of
causal pathologic interactions conducive of LOAD. In addition,
here structural alterations were only evaluated in the grey matter,
ignoring possible alterations within the white matter and in its
associated structural connectivity patterns. This will be the
main focus of a separate study, for which we are combining
structural T1 atrophy and diffusion-weighted connectivity
measurements58,59. Another potential limitation of our study is
that all evaluations were performed within a linear regression
framework. This could mean that the obtained results are mainly
reflecting the linear tendencies in the analysed biomarkers. The
alternative use of non-linear modelling techniques (for example,
radial basis and kernel functions) may provide a solution to
overcome this particular limitation. Similarly, the assumption of
an explicit analytic expression associated with each biomarker
(for example, equation 3, Methods section) is a limitation in line
with some previous data-driven models13,14,17. An event-based
perspective11,12 presents the advantage of not assuming any a
priori biomarkers shape. However, the latest models demand a
high computational cost to test exhaustively all the possible
combinations in events ordering, which can make it difficult to
apply such perspectives to a high number of multifactorial
biomarkers. Finally, and similarly to the previous models9–14,
here we are not addressing the issue that initial small changes/
alterations in specific biological factors could potentially cause
large alterations in other interconnected factors. This traditional
limitation suggests the need to study disease progression not only
in terms of alteration levels of specific biomarkers, but also
through the analysis of the multifactorial causal pathological
interactions that take place at the different spatiotemporal scales.
Causal analyses could potentially lead us to a more integrative
understanding of neurodegenerative progression, and will form
the central purpose of our future research.

Methods
Ethics statement. The study was conducted according to Good Clinical Practice
guidelines, the Declaration of Helsinki Principles, US 21CFR Part 50—Protection
of Human Subjects, and Part 56—Institutional Review Boards, and pursuant to
state and federal HIPAA regulations (adni.loni.usc.edu). Study subjects and/or
authorized representatives gave written informed consent at the time of enrolment
for sample collection and completed questionnaires approved by each participating
sites Institutional Review Board. The authors obtained approval from the
ADNI Data Sharing and Publications Committee for data use and publication,
see documents http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/
ADNI_Data_Use_Agreement.pdf and http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Manuscript_Citations.pdf, respectively.

MFDDA of LOAD progression. Here we considered that LOAD progression can
be characterized by a set of N biological and behavioural descriptors/biomarkers,
where each descriptor i (i¼ 1..N) is uniquely described by its temporal abnormality
level (DHC!LOAD

i ) and a total abnormality index (AbHC!LOAD
i ). As aging is a major

risk factor for LOAD, the dynamic behaviour of the abnormality level should
depend on the statistical distance between an unhealthy (LOAD associated) and a
healthy aging:

DHC!LOAD
i ageð Þ � distance yi ageþ LOADð Þ; yi ageð Þð Þ; ð1Þ

where yi is the spatiotemporal function describing the dynamics of the biomarker i
during aging, including or not the influence of pathological factors. In addition to
age and clinical state, we considered gender (gen), educational level (edu) and
apoe-e4 genotype (apoee4) as other aging and disease relevant factors. Note that the
inclusion of these variables here should not be considered exclusive of other
possible risk factors in posterior LOAD studies (for example, familial history, life
style conditions). Then, each biomarker observation can be written as:

ŷi ¼ fi age;DS; gender; edu; apoee4ð Þþ ei; ð2Þ

where fi is a function interrelating the risk factors and biomarker i, DS is the
individual disease state, reflecting LOAD progression and symptoms severity, and
ei is a noise term capturing the individual variability associated to i. For the sake of
simplicity on model definition and evaluation, here we considered each fi as an
additive linear function, assuming the previous variables and all their possible

pairwise interactions (that is, ð 5
2
Þ¼ 10 interactions) as predictors, and considering
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also possible random effects across patient visits:

ŷi;jm ¼b0 þ bj þ bage þ bage;jm

� �
agejm þ bDSDSjm þbgendergenderj

þbedueduj þbapoee4apoee4j þ Interactionsjm þ ei;jm:
ð3Þ

ŷi;jm is the estimator of the biomarker i for the subject j at time visit m. All b
coefficients in (3) correspond to fixed effects across the entire population, whereas
bj and bage,jm coefficients correspond to random effects modelling longitudinal
changes within each subject j. For each biomarker, we used the Bayesian
Information Criterion (BIC) to select among the three possible models associated to
expression (3): (i) a purely fixed effects model (i.e. bj¼ bage,jm¼ 0), (ii) a mixed
effects model with different intercepts and fixed slopes (i.e. bja0,bage,jm¼ 0)
or (iii) a mixed effects model with different time intercepts and different slopes
(i.e. bja0,bage,jma0). Parameters estimation for alternative (i) was performed using
a robust linear regression algorithm60, whereas estimations for (ii) and (iii) were
based on the Fisher Scoring optimization61. Before estimations, all biomarkers were
standardized to have mean 0 and s.d. 1 across subjects.

As individual DS measure, here we used the individual clinical diagnoses
assigned by the ADNI experts, which were based on multiple clinical evaluations.
The assumed DS values ranged from 1 to 4, with DS¼ 1 (HC), DS¼ 2 (EMCI),
DS¼ 3 (LMCI) and DS¼ 4 (LOAD), respectively. Due to the impact of
uncontrolled factors during data acquisition and cognitive/clinical evaluations (for
example, pre-symptomatic effects and noisy biomarkers measurements), the raw
data can present a given level of heterogeneity inside each clinical group11. Thus, to
control for possible heterogeneity effects, before model fitting and evaluations we
performed a robust data homogeneity/quality control, consisting of three main
steps (see Supplementary Note 1):

(i) Identification and elimination of all subjects that presented clinical
conversions, across the whole dataset acquisition.

(ii) Calculation of individual likelihood scores reflecting how accurately each
subject was diagnosed by the clinical experts, and subsequent elimination of
the subjects with low likelihood scores (below the 10th percentile). For
further details, see Supplementary Note 1.

(iii) For each biomarker and clinical group, outlier identification was performed
based on the Mahalanobis distance, with a significative squared distance
(Po0.05) meaning an outlier (for implementation details, see ref. 62).
Outlier detection for imaging biomarkers considered all brain regions, using
the multivariate Mahalanobis distance.

Both steps (i) and (ii) controlled for cognitive heterogeneity, whereas (iii)
controlled for variability and noise on biological measurements, improving
together cognitive and biological data homogeneity at the clinical group levels.
Importantly, although the choice of a categorical DS variable may overlook possible
individual variability beyond the clinical classification, a strong correlation has
been observed between the clinical diagnoses within ADNI data and a continuous
LOAD disease progression score obtained after integrating multiple cognitive,
neuroimaging and biospecimen biomarkers17.

Once the parameters for each fi expression were estimated based on the
homogeneity/quality controlled data, we marginalized the fi expression by gender,
educational level and apoe-e4, from their minimum to their maximum values,
respectively (for mathematic details, see Supplementary Note 1). This is equivalent
to keeping only the temporal (age) and disease components (DS) in a final
ŷi age;DSð Þ function, after weighting by the effects of the marginalized risk factors.
Note that such weighting method differs notably from the traditional covariate
‘controlling’ procedure (that is, removing the covariate effects on each
descriptor13), which may cause the loss of relevant risk factor effects on the
disease’s analysis and the deletion of useful information contained in the data.

Next, using the marginalized estimator ŷi age;DSð Þ, each descriptor was
analytically reconstructed under different aging and disease conditions. For this,
different possible aging and disease trajectories were generated, covering all the
possible clinical state transitions during aging, with the DS going from: HC to HC,
HC to EMCI, HC to LMCI, and HC to LOAD states, respectively. Similar to the
approach described in ref. 13, the generative procedure consisted in evaluating the
marginalized ŷi age;DSð Þ for different values of age and DS (Supplementary Fig. 1).
For example, for a HC to LOAD transition, ages took on 1560 increasing values
(that is, once every week) while the DS incremented linearly with age (or following
a sigmoid, reaching similar conclusions; Supplementary Figs 1 and 2) from the
typical values for the HC subjects (DS¼ 1) to the typical values for LOAD subjects
(DS¼ 4). Then, at each age/disease time point, the dynamic abnormality level for
the characteristic HC to LOAD trajectory was calculated as its absolute difference
with the same time point on the HC to HC trajectory13:

DHC!LOAD
i age;HC! LOADð Þ ¼ ŷi age;HC! LOADð Þ� ŷi age;HCð Þj j: ð4Þ

This expression (4) reflects quantitatively how, due to the disease progression,
a given biomarker i differentiates from its age-matched values at the healthy
stage. Importantly, as all the descriptors were previously standardized (that is,
to have mean 0 and s.d. 1), the values obtained from (4) allow the comparison
(in terms of absolute distance to a healthy aging) of the alterations occurring to
the different biological descriptors/biomarkers. Subsequently, and based on this

distance/abnormality metric (4), for each descriptor i a total abnormality index
(AbHC!LOAD

i E [0, 1]) was evaluated, summarizing its normalized dissimilarity with
healthy aging across the entire disease/aging progression interval, in the HC to
LOAD trajectory:

AbHC!LOAD
i ¼ 1

K

Zagemax

agemin

DHC!LOAD
i age;DSð Þdage; ð5Þ

where K is a normalization constant, guaranteeing a maximum total abnormality
index of 1 across all considered biomarkers. Potentially, some biomarkers can be
abnormal at early disease states and tend to have normal values with aging and/or
advanced disease progression processes (for example, a protein with an increase in
concentration for early disease states, and a posterior concentration decrease due to
a down regulation in its associated gene). In such cases the total abnormality index
(AbHC!LOAD

i ) could give a biased measure of how early these biomarkers become
affected. To overcome this we also calculated intermediate abnormality indexes
(AbHC!EMCI

i and AbHC!LMCI
i , respectively), evaluating expression (5) until the

corresponding EMCI and LMCI time points were reached (see Supplementary
Tables 2 and 3).

Finally, for each biomarker, we used a bootstrapping procedure (creating 500
different data sets with replacement) to calculate the mean and the 95 % confidence
intervals of the obtained characteristic trajectories and their associated abnormality
levels (see Fig. 3). All the results reported (Figs 2–6 and Supplementary Tables 2–3)
and associated biological interpretations in this study were based on the mean
bootstrapped outcomes.

For algorithmic details, see Supplementary Note 1.

Data description and processing. Study participants. This study used 1,171
individual data from ADNI (adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early Alzheimer’s disease.

See Supplementary Table 1 for demographic characteristics of the included
ADNI subjects.

Structural MRI acquisition/processing. Brain structural T1-weighted
three-dimensional images were acquired for all subjects. For a detailed
description of acquisition details, see http://adni.loni.usc.edu/methods/documents/
mri-protocols/. All images underwent non-uniformity correction using the N3
algorithm63. Next, they were segmented in grey matter, white matter and CSF
probabilistic maps, using SPM12 (www.fil.ion.ucl.ac.uk/spm). Grey matter
segmentations were standardized to MNI space using DARTEL tool from SPM12.
Each map was modulated to preserve the total amount of signal/tissue. Mean grey
matter density and determinant of the Jacobian (DJ) values were calculated for 78
regions covering all the brain’s grey matter15. For each region, obtained density and
DJ values were statistically controlled for differences in acquisition protocols. Both
measurements provided equivalent modelling results. All the results/figures
presented in this study correspond to the DJ, which constitutes a robust local
measure of structural atrophy.

Fluorodeoxyglucose PET acquisition/processing. A 185 MBq (5þ 0.5 mCi) of
[18F]-FDG was administered to each participant and brain PET imaging data were
acquired B20 min post injection. All images were corrected using measured
attenuation. Also, images were preprocessed according to four main steps 64:
(1) dynamic co-registration (separate frames were co-registered to one another
lessening the effects of patient motion), (2) across time averaging, (3) re-sampling
and reorientation from native space to a standard voxel image grid space (‘AC-PC’
space) and (4) spatial filtering to produce images of a uniform isotropic resolution
of 8 mm FWHM. Next, using the registration parameters obtained for the
structural T1 image with nearest acquisition date, all FDG-PET images were
spatially normalized to the MNI space. Regional standardized uptake value ratio
(SUVR) values for the considered 78 regions15 were calculated taking the
cerebellum as reference region.

Resting functional MRI acquisition/processing. Resting-state functional images
were obtained using an echo-planar imaging sequence, on a 3.0-Tesla Philips
MRI scanner. Acquisition parameters were: 140 time points, repetition time
(TR)¼ 3,000 ms, echo time (TE)¼ 30 ms, flip angle¼ 80�, number of slices¼ 48,
slice thickness¼ 3.3 mm, spatial resolution¼ 3� 3� 3 mm3 and in plane matrix
¼ 64� 64. Preprocessing steps included: (1) motion correction, (2) slice timing
correction, (3) spatial normalization to MNI space using the registration
parameters obtained for the structural T1 image with nearest acquisition date, and
(4) signal filtering to keep only low-frequency fluctuations (0.01–0.08 Hz)65.
To have regional quantitative indicators of the brain’s functional integrity,
fractional amplitude of low-frequency fluctuation66, regional homogeneity67 and
functional connectivity degree68 measures were calculated for each considered
brain region. Among these three measurements, low-frequency fluctuation showed
the highest sensitivity to disease progression. Consequently, all the results
presented in this study correspond to this measure.

ASL acquisition/processing. Resting ASL data were acquired using the Siemens
product PICORE sequence. Acquisition parameters were: TR/TE¼ 3,400/12 ms,
TI1/TI2¼ 700/1,900 ms, FOV¼ 256 mm, 24 sequential 4 mm thick slices
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with a 25% gap between the adjacent slices, partial Fourier factor¼ 6/8,
bandwidth¼ 2,368 Hz/pix, and imaging matrix¼ 64� 64. For preprocessing
details see ‘UCSF ASL Perfusion Processing Methods’ in www.adni.loni.usc.edu.
In summary, main preprocessing steps included: (1) motion correction,
(2) perfusion-weighted images (PWI) computation, (3) intensity scaling,
(4) cerebral blood flow (CBF) images calculation, (5) spatial normalization to
MNI space using the registration parameters obtained for the structural T1 image
with nearest acquisition date and (6) mean CBF calculation for each considered
brain region.

Ab PET acquisition/processing. A 370 MBq (10mCi±10%) bolus injection
of AV-45 was administered to each participant, and 20 min continuous brain
PET imaging scans were acquired B50 min post injection. The images were
reconstructed immediately after the 20-min scan, and when motion artifact was
detected, another 20-min continuous scan was acquired. For each individual PET
acquisition, images were initially preprocessed according to four main steps64:
(1) dynamic co-registration (separate frames were co-registered to one another
lessening the effects of patient motion), (2) across time averaging, (3) re-sampling
and reorientation from native space to a standard voxel image grid space (‘‘AC-PC’’
space), and (4) spatial filtering to produce images of a uniform isotropic resolution
of 8 mm FWHM. Next, using the registration parameters obtained for the
structural T1 image with nearest acquisition date, all amyloid images were spatially
normalized to the MNI space. Considering the Cerebellum as an Ab non-specific
binding reference, regional SUVR values for the considered 78 grey matter regions
were calculated.

Plasma measures. Levels of 146 analytes (Supplementary Table 2)
were measured from subject plasma, using the rules-based medicine
(rulesbasedmedicine.com, Austin, TX) Human Discovery Multi-Analyte Profile
(MAP) 1.0 panel and a Luminex 100 platform. For further acquisition and
preprocessing details see ref. 69 and http://adni.loni.usc.edu/wp-content/uploads/
2010/11/BC_Plasma_Proteomics_Data_Primer.pdf.

CSF measures. Levels of 87 analytes (Supplementary Table 3) were measured
from subject CSF, using a multiplex-based immunoassay panel based on
Luminex immunoassay technology developed by rules-based medicine
(MyriadRBM, Austin, TX, USA). For further acquisition and preprocessing
details see http://adni.loni.usc.edu/wp-content/uploads/2012/01/2011Dec28-
Biomarkers-Consortium-Data-Primer-FINAL1.pdf.

Data availability. All data used in this study is available at the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
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