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Abstract
Late onset Alzheimer’s disease (LOAD) is a genetically complex and clinically heteroge-

neous disease. Recent large-scale genome wide association studies (GWAS) have identi-

fied more than twenty loci that modify risk for AD. Despite the identification of these loci,

little progress has been made in identifying the functional variants that explain the associa-

tion with AD risk. Thus, we sought to determine whether the novel LOAD GWAS single

nucleotide polymorphisms (SNPs) alter expression of LOAD GWAS genes and whether

expression of these genes is altered in AD brains. The majority of LOAD GWAS SNPs

occur in gene dense regions under large linkage disequilibrium (LD) blocks, making it

unclear which gene(s) are modified by the SNP. Thus, we tested for brain expression quan-

titative trait loci (eQTLs) between LOAD GWAS SNPs and SNPs in high LD with the LOAD

GWAS SNPs in all of the genes within the GWAS loci. We found a significant eQTL between

rs1476679 and PILRB andGATS, which occurs within the ZCWPW1 locus. PILRB and

GATS expression levels, within the ZCWPW1 locus, were also associated with AD status.

Rs7120548 was associated withMTCH2 expression, which occurs within the CELF1 locus.

Additionally, expression of several genes within the CELF1 locus, includingMTCH2, were
highly correlated with one another and were associated with AD status. We further demon-

strate that PILRB, as well as other genes within the GWAS loci, are most highly expressed

in microglia. These findings together with the function of PILRB as a DAP12 receptor sup-

ports the critical role of microglia and neuroinflammation in AD risk.

Introduction
Late onset Alzheimer’s disease (LOAD) is a complex, heterogeneous disease with a strong
genetic component (reviewed in [1]). APOEε4 is the strongest genetic risk factor for LOAD:
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carrying one copy of APOEε4 increases AD risk by 3 fold and carrying two copies of APOEε4
increases AD risk by 8–10 fold (reviewed in [2]). However, only 50% of LOAD cases carry an
APOEε4 allele, suggesting that other genetic factors contribute to risk for LOAD.

In the last six years, genome wide association studies (GWAS) have facilitated the analysis
of millions of single nucleotide polymorphisms (SNPs) in tens of thousands of samples [3–10].
The International Genomics of Alzheimer’s Project (IGAP) has recently applied this approach
to LOAD case and control studies in 74,046 individuals, revealing 21 loci that modify LOAD
risk: ABCA7, APOE, BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1, EPHA1, FERMT2,
HLA-DRB5/DRB1, INPP5D,MEF2C,MS4A6A, NME8, PICALM, PTK2B, SLC24A4, SORL1,
and ZCWPW1 [9]. The IGAP GWAS genes fall into several common pathways that have been
previously implicated in AD: neural development, synapse function, endocytosis, immune
response, axonal transport, and lipid metabolism (reviewed in [1]). However, the specific
effects of these SNPs on gene function and the resulting impact on disease remains poorly
understood [11–14]. Two aspects of GWAS approaches have limited the interpretations that
we can make regarding the functional impact of these SNPs on the molecular mechanisms
underlying AD. First, the majority of the most significant GWAS SNPs are located in non-cod-
ing or gene-dense regions, making it challenging to identify which gene the SNP is modifying.
Second, the majority of GWAS top SNPs are in high linkage disequilibrium (LD) with many
SNPs, which in some cases span hundreds of kilobases, making it difficult to determine which
SNP is the functional variant responsible for modifying LOAD risk.

Our group and others have previously demonstrated that some LOAD GWAS genes are dif-
ferentially expressed in AD brains [11, 15, 16]. We found that expression levels of some LOAD
GWAS genes that were identified in early GWAS [3–8], including ABCA7, BIN1, CD33, CLU,
CR1, andMS4A6E, are associated with clinical and/or neuropathological aspects of AD [15]
but failed to identify strong expression quantitative trait loci (eQTLs) [15, 17].

Despite the identification of additional, novel GWAS loci that modulate LOAD risk, we still
know little of the functional impact of LOAD GWAS SNPs and the role of these genes in AD
pathogenesis. We sought to examine functional effects of IGAP GWAS SNPs by examining
eQTLs in several human brain expression cohorts. To do this, we identified all of the genes that
fell within the LD block for each IGAP GWAS locus. We then analyzed eQTLs and association
with AD status. rs1476679 and rs7120548 are associated with PILRB andMTCH2 expression,
respectively. Additionally, the expression of several genes within the CELF1 locus, including
MTCH2, were highly correlated and were associated with AD status. Importantly, these signifi-
cant eQTLs and expression differences in LOAD brains were observed in genes that occur
within the IGAP GWAS loci but not the named IGAP GWAS gene. Together, our findings
demonstrate that several LOAD risk variants modify expression of nearby genes and may con-
tribute to LOAD risk.

Results

Identifying genes associated with IGAP GWAS SNPs
A recent IGAP GWAS in 74,046 individuals revealed 21 loci that are significantly associated
with altered AD risk, 12 of which are novel [9]: ABCA7, APOE, BIN1, CASS4, CD2AP, CD33,
CELF1, CLU, CR1, EPHA1, FERMT2,HLA-DRB5/DRB1, INPP5D,MEF2C,MS4A6A, NME8,
PICALM, PTK2B, SLC24A4, SORL1, and ZCWPW1. To define the functional impact of the
IGAP SNPs, we used RegulomeDB and HaploReg to predict the regulatory potential of the
IGAP SNPs (S1 Table) [18]. One IGAP SNP, rs1476679, produced a RegulomeDB score with
suggestive regulatory potential (Score: 1f; Table 1)[19]. RegulomeDB predicts that rs1476679
affects protein binding of RFX3, FOS and CTCF and exhibits eQTLs with GATS, PILRB, and
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TRIM4 (Table 1). Rs8093731 modifies a PAX6 motif and protein binding of E2F4 and FOS
(Score: 2b; Table 1). Rs10792832 modifies an FAC1motif and binding of SPI1 (Score: 3a;
Table 1). Despite the identification of several SNPs that have suggestive regulatory potentials,
we were unable to identify eQTLs in either RegulomeDB or HaploReg that occur within the
named LOAD GWAS gene (Table 1).

The majority of GWAS SNPs occur in regions of high LD that span multiple genes [9].
Thus, we asked whether IGAP GWAS SNPs alter expression of genes that are within the LD
block rather than the genes immediately under the SNP with the highest p-value. Manhattan
plots reported in Lambert et al. were used to identify all of the genes within the LD block for
each IGAP GWAS SNP (Table 2) [9]. Eleven of the 21 IGAP GWAS SNPs have multiple genes
within the LD block. We tested whether the IGAP GWAS SNPs have functional effects on gene
expression by examining all of the genes within each region.

Table 1. Regulatory effects of IGAP top SNPs.

RegulomeDB HaploReg

IGAP Gene IGAP SNP Score eQTL Motif
Changed

Proteins
Bound

eQTL Motifs Changed Proteins
Bound

ZCWPW1 rs1476679 1f TRIM4,
PILRB,
GATS*

- CTCF, FOS,
RFX3

- - CTCF

DSG2 rs8093731 2b - PAX6 E2F4, FOS - AHR, NKX2, NKX3, PAX6, PBX3 -

PICALM rs10792832 3a - FAC1 SPI1 - AP-3, FAC1, HDAC2 -

MS4A6A rs983392 4 - - RUNX1 - HMG-IY, HAND1, MYC -

ABCA7 rs4147929 4 - MAZ, IRF1 - HNF4,SP2 -

CR1 rs6656401 5 - - - - RXRA,YY1 -

BIN1 rs6733839 5 - MEF2, PU.1 - - DOBOX4, MEF2, NFκB, VDR -

EPHA1 rs11771145 5 - - - - HOXD10 GATA2

CLU rs9331896 5 - - - - BDP1, NRSF -

CD33 rs3865444 5 - - - - CDP, FOXO, SREBP -

HLA rs9271192 5 - CHD1, MXI1,
TBP

- HOXA13, POU2F2, TCF11::MAFG POL2

PTK2B rs28834970 5 - - - - CEBPA, CEBPB, CEBPD, HSF,STAT,
P300

-

SORL1 rs11218343 5 - - POLR2A,
TBP, RFX3

- - -

SLC24A4/
RIN3

rs10498633 5 - - - - AP1, CDX2, FOXD1, FOXJ2, HOXA9,
HOXC10, HOXC9, MRG1:HOXA9, NKX6,

PDX1, TCF12, P300

-

INPP5D rs35349669 5 - RBP-Jκ - - AP-2rep,RBP-Jκ -

FERMT2 rs17125944 5 - - - - PU.1, SRF, P300 -

CASS4 rs7274581 5 - - - - E2F, SIN3AK-20, YY1 -

CD2AP rs10948363 6 - FOXJ3, TCF3 - - FOXJ1, HOXB13, SOX -

CELF1 rs10838725 6 - C/EBPΔ,
FOXA2,
HNF3β

- - CEBPB, CEBPD, Foxa -

MEF2C rs190982 7 - - - - GATA, HNF1 -

NME8 rs2718058 7 - - - - AP1, ELF3, FOXA, HMG-IY, MEF2, PAX6,
STAT

-

*Monocytes. PU.1 is the protein product of SPI1

doi:10.1371/journal.pone.0148717.t001
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eQTLs in AD Risk Loci
To determine whether IGAP GWAS SNPs modify expression of genes within the GWAS loci,
we examined cis-eQTLs in a publically available dataset from neuropathologically confirmed
normal control brains (UKBEC [20]; Table 3 and S2 Table). Rs1476679 was significantly associ-
ated with expression of multiple PILRB transcripts in most brain regions (Table 3). Several tran-
scripts shared between PILRB and PILRA were associated with rs1476679. However, transcripts
specific to PILRA did not exhibit an eQTL with rs1476679, suggesting that the effect is driven by
differences in PILRB specifically (Table 3). GATS, which is also present within the LD block of
the IGAP SNP, had a single transcript that also displayed an eQTL with rs1476679 in most
brain regions (Table 3). The IGAP SNP, rs9331896, was significantly associated with CLU
expression in the white matter, hippocampus, temporal cortex and occipital cortex (Table 3).
EQTLs were also observed between rs6656401 and CR1, CR2 and CR1L, all of which occur
within the LD block for rs6656401. The IGAP SNP rs10838725, occurs in a gene dense region
and several genes within this region exhibited eQTLs with the IGAP SNP: CELF1, NDUF3,
KBTD4, PTPMT1,MTCH2, FNBP4,MADD andNUP160 (Table 3). IGAP SNPs rs983392,
rs10792832, rs2718058, and rs7274581 exhibited eQTLs withMS4A6A, EED, GPR141, and
CASS4, respectively (Table 3). Although several loci showed nominal association, only the CR1
eQTL inWHMT survived a strict multiple test correction (Bonferroni p = 3.9x10-5).

Our initial analyses were performed using the candidate genes manually selected from genes
within the IGAP GWAS loci. We next applied an unbiased approach to determine which genes
are most highly associated with the IGAP GWAS SNPs (UKBEC; S3 Table). A subset of the

Table 2. Genes within the IGAPGWAS loci.

IGAP SNP IGAP Gene Genes within LD block

rs6656401 CR1 CR2, CR1L

rs6733839 BIN1 CYP27C1

rs10948363 CD2AP None

rs11771145 EPHA1 LOC285965, TAS2R60

rs9331896 CLU None

rs983392 MS4A6A MS4A3, MS4A2, MS4A6A, MS4A4A, MS4A6E

rs10792832 PICALM EED

rs4147929 ABCA7 CNN2, POLR2E, GPX4, HMHA1, SBNO2

rs3865444 CD33 None

rs9271192 HLA-DRB5–
HLA-DRB1

HLA-DRB6, HLA-DQA1, HLA-DQB1

rs28834970 PTK2B None

rs11218343 SORL1 None

rs10498633 SLC24A4 & RIN3 None

rs8093731 DSG2 DSG3

rs35349669 INPP5D None

rs190982 MEF2C None

rs2718058 NME8 GPR141

rs1476679 ZCWPW1 NYAP1, PMS2P1, PILRB, PILRA, C7ORF61, C7ORF47, MEPCE,
GATS

rs10838725 CELF1 MADD, SLC39A13, PSMC3, NDUFS3, KBTBD4, PTPMT1, MTCH2,
AGBL2, FNBP4, NUP160, C1QTNF4, RAPSN

rs17125944 FERMT2 None

rs7274581 CASS4 C20ORF43, CSTF1

doi:10.1371/journal.pone.0148717.t002
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IGAP SNPs, rs6656401, rs9331896, rs28834970, and rs10498633, and rs190982, were associ-
ated with expression of the named IGAP gene, CR1, CLU, PTK2B, SLC24A4, andMEF2C,
respectively (S3 Table). For the majority of the IGAP SNPs, genes that occur within the LD
block for the IGAP GWAS loci are among the ten most highly associated eQTLs; however, the
associations failed to achieve statistical significance (S3 Table).

In order to replicate these eQTL findings, we analyzed a second publically available dataset
composed of expression and genotype information from neuropathologically normal control
brains (GSE15745 [21]). In most cases, the original GWAS SNP was not present in the dataset;
so, we used one or more SNPs in high LD with the GWAS SNP to test for eQTLs (Table 4; S4
Table). Cis-eQTLs were analyzed in frontal and temporal cortices (Table 4; S4 Table). We
observed a significant association between rs5015756, in LD with IGAP SNP rs1476679 (r2 =
0.8; D’ = 1; S5 Table), and several PILRB probes (Table 3; p = 3.26x10-5, FCTX, and 4.12x10-5,
TCTX; Bonferroni p = 3.2x10-4).

In a third replication dataset containing expression and genotype information from AD and
control brains (GSE15222), we were able to replicate the eQTL between rs1476679 and PILRB
(p = 0.0022; Table 5; Bonferroni p = 0.003). Additionally, we replicated the eQTL observed in
the UKBEC dataset between rs7120548 andMTCH2, a gene located in the CELF1 locus
(p = 0.0011; Table 5) [22]. In GSE15222, very few genes were present in the cleaned dataset
that occur within the GWAS loci for the IGAP SNPs (e.g. CLU and CR1), making it impossible
to independently replicate a subset of eQTLs (S6 Table).

Thus, three independent datasets demonstrate that rs1476679 is associated with altered
PILRB expression in multiple brain regions. Additionally, these datasets provide evidence for a
much more complex picture of AD genetic risk than was previously reported in the original
IGAP GWAS: (1) the majority of IGAP GWAS SNPs do not significantly affect expression of
nearby genes in brain homogenates and (2) eQTLs occur in genes that are near the IGAP SNP
but not that have been named as an IGAP gene.

Table 4. SNPs in LD with rs1476679 produce eQTL with PILRB in control brains (GSE15745).

Analyzed SNP PILRB Transcript Frontal Cortex Temporal Cortex

P value β P value β

rs5015756 ILMN_1768754 0.2952 0.0375 0.0182 0.1035

ILMN_1685534 5.65x10-5* 0.0678 0.0572 0.0274

ILMN_1723984 3.26x10-5* 0.0811 4.12x10-5* 0.0575

ILMN_1760345 0.0384 0.0462 0.4359 0.0101

ILMN_1729915 0.7101 -0.0046 0.5242 0.0084

ILMN_1663753 0.0732 0.0213 0.0257 0.0309

* Passed multiple test correction (Bonferroni p = 3.2x10-4)

doi:10.1371/journal.pone.0148717.t004

Table 5. eQTLs of IGAP GWAS SNPs in GSE15222.

IGAP SNP IGAP Gene Analyzed SNP Gene P value β

rs1476679 ZCWPW1 rs1476679 PILRB 0.0022 0.108811

rs10838725 CELF1 rs7120548 MTCH2 0.0011 0.07507

doi:10.1371/journal.pone.0148717.t005
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Identifying the most significant eQTL SNP within IGAP GWAS loci
Because the majority of GWAS top SNPs are in high LD with many SNPs, it is difficult to
determine which SNP is the functional variant responsible for modifying LOAD risk. To deter-
mine whether other SNPs within the IGAP GWAS loci more significantly contribute to eQTLs,
we identified all SNPs within the IGAP GWAS loci with a p-value of 10−5 or lower [9]. We
then used an unbiased approach to determine which genes are most highly associated with the
SNPs within the IGAP GWAS loci (UKBEC; S7 and S8 Tables). Assuming the most stringent
cut-off for multiple test correction (p = 10−6)[20], we identified SNPs within the CR1,
ZCWPW1, CLU, and PTK2B loci that produced significant eQTLs (S7 Table).

To determine whether the SNPs that produce the most significant eQTL within each IGAP
GWAS locus represent the same signal as the GWAS top SNP or an independent signal, we
tested for the association of the IGAP GWAS top SNP with AD risk and then conditioned the
analysis based on the most significant eQTL SNP within each locus (S9 Table). Using this
approach, in the ADGC subset of the IGAP dataset, we found that for each locus, the most sig-
nificant eQTL SNP and the IGAP top SNP represented the same signal. Thus, while we identi-
fied SNPs within IGAP GWAS loci that produce stronger eQTLs than the IGAP top SNP, these
SNPs are likely marking a single risk locus.

Expression differences in AD brains
To determine whether the named LOAD GWAS genes or genes within the GWAS loci exhibit
altered expression in AD brains, we examined gene expression in a study of laser micro-dis-
sected neurons (GSE5281; Table 6).MTCH2 expression was significantly associated with AD
status, where expression levels were lower in AD cases compared with controls (p = 2.2x10-12

and 2.9x10-12; Table 6; Bonferroni p = 5x10-4). PILRB expression was also associated with dis-
ease status, where PILBR expression was lower in AD cases compared with controls
(p = 1.2x10-3; Table 6). Expression of GATS, also within the ZCWPW1 locus, was associated
with AD status in the same direction as PILRB (p = 2.1x10-7; Table 6).

Several genes within the GWAS loci were associated with disease status in the neuron-spe-
cific expression dataset (GSE5281): EED, POLR2E, GPX4, SORL1, INPP5D,MEF2C, C7ORF61,
CELF1, PSMC3, NDUFS3, PTPMT1, NUP160, C20ORF43, and CSTF1 (Table 6; S10 Table).
Interestingly, expression of several genes within the CELF1 GWAS locus were associated with
disease status: CELF1, SLC39A13, PSMC3, PTPMT1, NDUFS3,MTCH2, FNBP4, and NUP160,
some of which also produced suggestive evidence of eQTLs (Table 3, S3 and S4 Tables). Expres-
sion ofMTCH2, NDUFS3, PTPMT1, PSMC3, and NUP160 (but not CELF1) were highly corre-
lated in control neurons (Fig 1), and this correlation is lost in AD brains (Fig 1). Interestingly,
despite the eQTLs and disease associations with PILRB and GATS expression, there was no cor-
relation between these genes (S1 Fig). As with our eQTL findings, very few of the genes associ-
ated with disease status were the genes originally identified as the gene associated with the
IGAP top SNP.

Cell-type specific expression of genes within the GWAS loci
Evidence from multiple, independent datasets have identified eQTLs between IGAP SNPs and
PILRB and multiple genes within the CELF1 locus (includingMTCH2). We have also observed
altered expression levels of PILRB and GATS within the ZCWPW1 locus andMTCH2 and
other genes within the CELF1 locus in AD brains. This could be due to differences in expres-
sion within a cell or to differences in the numbers of cells in which these genes are expressed.
To determine whether genes within the CELF1 locus and other IGAP GWAS loci are preferen-
tially expressed in certain cell-types in the brain, we examined a dataset containing RNAseq

AD Risk Alleles Regulate Gene Expression in the ZCWPW1 andCELF1 Loci
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performed in isolated cell-types in the mouse brain (http://web.stanford.edu/group/barres_lab/
brain_rnaseq.html [23]). We found that genes within the CELF1 locus are most highly
expressed in non-neuronal cell-types (S11 Table). This suggests that genes within this region
act cooperatively to modify AD risk.

Table 6. Expression of IGAP GWAS loci is associated with disease status in GSE5281.

IGAP Loci Gene Probe ID P values β

ZCWPW1 ZCWPW1 223992_x_at 0.0261 -0.3555

ZCWPW1 220618_s_at 0.8938 0.015

PMS2P1 239699_s_at 0.1083 -0.2038

PMS2P1 214526_x_at 0.7354 -0.0258

C7orf51 1553288_a_at 0.0156 0.2291

C7orf61 229913_at 7x10-4 0.4589

C7orf47 226434_at 0.2368 0.0969

MEPCE 219798_s_at 0.3281 0.0878

PILRA 219788_at 0.2172 0.1819

PILRA 222218_s_at 0.2141 0.1406

PILRB 220954_s_at 1.2x10-3 -0.5226

PILRB 225321_s_at 0.0915 0.1579

GATS# 227321_at 2.1x10-7 -0.4098

CELF1 CELF1# 1555467_a_at 3.8x10-9 -0.9599

CELF1 209489_at 0.1711 -0.0928

CELF1 221743_at 1.5x10-3 0.2706

CELF1 204113_at 0.4106 -0.1278

CELF1 221742_at 0.317 0.1058

CELF1 235297_at 0.2333 0.2114

CELF1 235865_at 0.8078 0.0408

SLC39A13 225277_at 3.1x10-3 0.2519

SLC39A13 1552295_a_at 0.6693 -0.0465

PSMC3# 201267_s_at 4.80x10-6 -0.7725

NDUFS3# 201740_at 6.6x10-11 -0.8212

MTCH2# 217772_s_at 2.2x10-12 -0.6621

MTCH2# 222403_at 2.9x10-12 -0.6235

PTPMT1# 223808_s_at 2.9x10-7 -0.3872

PTPMT1# 225901_at 1.2x10-5 -0.7372

PTPMT1 218570_at 0.0544 -0.1777

AGBL2 220390_at 0.0813 0.2846

FNBP4 212232_at 3.1x10-3 -0.4194

FNBP4 235101_at 0.0484 0.3496

FNBP4 242472_x_at 0.0534 0.301

FNBP4 229272_at 0.5129 -0.1087

NUP160# 212709_at 1x10-4 0.4791

NUP160 214962_s_at 0.0477 -0.3451

NUP160 214963_at 0.0587 -0.3362

KBTBD4 218570_at 0.0544 -0.1777

KBTBD4 218569_s_at 0.0944 -0.25

KBTBD4 223765_s_at 0.3863 0.1439

#Passed multiple test correction (Bonferroni p = 5x10-4)

doi:10.1371/journal.pone.0148717.t006
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Fig 1. Correlation between expression of genes within the CELF1 locus is lost in AD brains.
Expression ofMTCH2, NDUFS3, PTPMT1, PSMC3, andNUP160 are highly correlated in laser
microdissected neurons. Correlation is lost in AD brains. Gene expression in all brain samples (A, D, G, J, M,
P, S). Control only (B, E, H, K, N, Q, T). AD only (C, F, I, L, O, R, U).

doi:10.1371/journal.pone.0148717.g001
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We examined cell-type specific expression of all of the genes within the IGAP GWAS loci
(S11 Table). We found that the majority of genes within the IGAP GWAS loci are most highly
expressed in microglia (37%):MEF2C, BIN1, PICALM, CD33, CSTF1,HLA-DRB1,
HLA-DQA1,HLA-DQB1, RIN3, INPP5D, PILRA, SLC39A13, CASS4, and PTK2B. To a lesser
extent, genes within the IGAP GWAS loci are expressed in endothelial (20%), oligodendrocytes
(20%), and astrocytes (17%). Neuronally expressed genes, which have been the central focus of
functional studies regarding these and other AD risk genes, only represent 11% of IGAP
GWAS loci: ABCA7,MADD, CELF1, andMEF2C. These findings provide further evidence of
the complex interplay between genotype, expression, and cell-type that mediates AD risk.

Discussion
Recent studies have identified novel GWAS loci that modulate LOAD risk; however, we still
know little of the functional impact of LOAD GWAS SNPs and the role of these genes in AD
pathogenesis. In this study, we examined functional effects of IGAP GWAS SNPs by examining
eQTLs in several human brain expression cohorts. We found that rs1476679 and rs7120548
are consistently associated with PILRB andMTCH2 expression across multiple cohorts, respec-
tively. Additionally, expression of several genes within the CELF1 locus, includingMTCH2,
were associated with AD status. From this study, we have generated two important findings:
(1) the majority of IGAP GWAS SNPs do not significantly affect expression of nearby genes in
human brain homogenates and (2) eQTLs occur in genes that are near the IGAP SNP but that
are not named as an AD risk gene.

PILRB is a paired immunoglobin-like type 2 receptor that is involved in regulation of
immune response [24]. PILRB contains highly related activating and inhibitory receptors.
PILRA is the inhibitory counterpart to PILRB. PILRB, through activation, and PILRA, through
inhibition, function cooperatively to control cell signaling via SHP-1, which mediates dephos-
phorylation of protein tyrosine residues. PILRA and PILRB are mainly expressed by cells of the
myeloid lineage [24]. PILRB associates with DAP12, a signaling adaptor protein that is cleaved
by γ-secretase and associates with TREM2, another AD risk gene [25–28]. PILRB also contains
a sialic acid binding domain, similar to the one described for CD33 [11, 14, 29]. Rs1476679
produced an eQTL with PILRB transcripts in human brain homogenates as well as in mono-
cytes (Table 1)[30], suggesting that this AD risk SNP may influence PILRB expression in
microglia in the brain.

One hypothesis based on our observation that multiple genes within the CELF1 loci have
eQTLs or are associated with AD status is that there is a key regulator within this region that is
influencing the expression of many genes. MTCH2 is a mitochondrial carrier protein that
induces mitochondrial depolarization [31]. MTCH2 associates with truncated BID to activate
apoptosis [31]. MTCH2 interacts with presenilin 1 [32, 33]. A second mitochondrial protein
that displayed some eQTL evidence and association with disease status, NDUFS3, also occurs
within the CELF1 locus. NDUFS3 is a component of the NADH-ubiquinone oxidoreductase
(Complex 1). NDUFS3 occurs in KEGG pathways for AD, Parkinson’s disease, and Hunting-
ton’s disease (KO05010, KO05012, KO05016). The third gene within this locus, NUP160, with
some evidence of an eQTL and altered expression in AD brains, is a key component of the
nuclear pore complex, which mediates nucleoplasmic transport. NUP160 has an extremely
long half-life and is thus susceptible to oxidative and age-related damage. Age-related defects
in NUP160 and the nuclear pore complex has been proposed to contribute to abnormal protein
trafficking, and in turn to neurodegenerative diseases [34, 35]. PTPMT1 is a lipid phosphatase
that dephosphorylates mitochondria proteins, which in turn regulates mitochondrial mem-
brane integrity. PSMC3 encodes the 26S proteasomal subunit, which plays a critical role in
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ATP-dependent degradation of ubiquitinated proteins.MTCH2, NUP160, NDUFS3, PTPMT1,
and PSMC3 expression are highly correlated in human brains and this correlation is lost in AD
brains.

Our cell-type specific expression studies illustrate that the majority of the genes expressed
within the IGAP GWAS loci are most highly expressed in microglia. These findings illustrate
the important role of immune response and clearance in LOAD pathogenesis. This has been
further supported in recent studies demonstrating that genetic variants linked with neurode-
generation are more likely to affect gene regulation in monocytes than in T cells [36].

One caveat to the study is that not all of the genes present within all of the IGAP loci were
present in the cleaned expression dataset for GSE15745. Thus, we cannot exclude the possibil-
ity that other genes within the loci also have significant eQTLs with the IGAP SNPs. Most of
these eQTL studies are also based on RNA extracted from brain homogenates, thus eQTLs in
cells that represent a minority of cells within that tissue homogenate may not be detectable
using this approach. It also remains possible that GWAS SNPs drive changes at the protein
level or drive transient changes in human brains. However, our findings of several strong asso-
ciations with IGAP SNPs and expression of genes that were not named as AD risk genes
emphasizes that the IGAP SNPs with putative functional effects may act on genes within the
GWAS loci rather than the genes immediately under the most significant IGAP SNP.

Methods

Publically available expression datasets
GSE15745. The GSE15745 dataset was obtained from control brains [21]. Brains from 150

neurologically normal individuals of European descent were obtained from the Department of
Neuropathology, Johns Hopkins University, Baltimore and from the Miami Brain Bank. Brain
tissue was collected from the cerebellum, frontal cortex, pons and the temporal cortex. The
samples were 31.3% female with a mean age of 45.8 years (range 15–101) and an average PMI
of 14.3 hours. SNP genotyping was performed on DNA extracted from cerebellar tissue for
each subject using Infinium HumanHap550 version 3 BeadChips. RNA expression was mea-
sured using HumanRef-8 Expression BeadChips (Illumina). To analyze RNA expression resid-
ual values were used that were log transformed and incorporated gender, age, and PMI as
covariates [21].

GSE15222. The GSE15222 dataset was used to examine eQTLs [37]. Neuropathologically
confirmed AD (n = 176) or normal controls (n = 188) of self-identified individuals of European
descent, were obtained from 20 National Alzheimer's Coordinating Center (NACC) brain
banks and from the Miami Brain Bank. The 188 control brains came from one of three brain
regions: 21% frontal cortex, 73% temporal cortex and 2% parietal cortex. The samples were
45% female with a mean age of 81 years (range 65–100) and an average post mortem interval
(PMI) of 10 hours. The 176 LOAD brains were composed of 18% frontal cortex, 60% temporal
cortex and 10% parietal cortex. The samples were 50% female with a mean age of 84 years
(range 68–102) and an average PMI of 9 hours. An Affymetrix 500K chip was used to obtain
genotype data, and an Illumina ref-seq 8 chip was used to obtain RNA expression data. To ana-
lyze RNA expression, residual values were used that were log transformed and then gender,
APOE genotype, age, hybridization date, site, and PMI were included as covariates.

GSE5281. The GSE5281 dataset was obtained from laser microdissected neurons from
AD and control brains [38]. Brain samples from 47 individuals of European descent that were
collected fromWashington University, Duke University, and Sun Health Research Institute
were included in the study. Samples were clinically and neuropathologically confirmed AD or
controls. The 33 AD samples were 54.5% female with a mean age of 79.9 years (range 73–86.8)
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and an average PMI of 2.5 hours. The 14 control brains were 28.6% female with a mean age of
79.8 years (range 70.1–88.9). All samples were obtained from the entorhinal cortex, hippocam-
pus, medial temporal gyrus, posterior cingulate, superior frontal gyrus, and primary visual cor-
tex. RNA expression was measured using an Affymetrix GeneChip for gene expression. To
analyze RNA expression, the log transformed expression values were analyzed with brain
region, age, and gender as covariates.

UKBEC. The UKBEC (www.braineac.org) dataset is composed of brains from 134 neuro-
pathologically normal controls [20]. Ten brain regions were extracted for each brain: occipital
cortex (OCTX), frontal cortex (FCTX), temporal cortex (TCTX), hippocampus (HIPP), intra-
locular white matter (WHMT), cerebellar cortex (CRBL), thalamus (THAL), putamen
(PUTM), substantia nigra (SNIG), and medulla (MEDU). RNA expression was measured
using an Affmetrix Exon 1.0 ST array. Genotyping was performed on the Illumina Infinium
Omni1-Quad BeadChip.

IGAP LOADGWAS
International Genomics of Alzheimer's Project (IGAP) is a large two-stage study based upon
genome-wide association studies (GWAS) on individuals of European ancestry. In stage 1,
IGAP used genotyped and imputed data on 7,055,881 single nucleotide polymorphisms
(SNPs) to meta-analyze four previously-published GWAS datasets consisting of 17,008 Alzhei-
mer's disease cases and 37,154 controls (The European Alzheimer's disease Initiative–EADI the
Alzheimer Disease Genetics Consortium–ADGC The Cohorts for Heart and Aging Research
in Genomic Epidemiology consortium–CHARGE The Genetic and Environmental Risk in AD
consortium–GERAD). In stage 2, 11,632 SNPs were genotyped and tested for association in an
independent set of 8,572 Alzheimer's disease cases and 11,312 controls. Finally, a meta-analysis
was performed combining results from stages 1 & 2.

ADGC
The ADGC case-control database was previously described [8]. The 15 datasets with imputed
data were analyzed (1,000 Genomes Project Phase 1 March 2012 v3).

Statistical analysis
Relative gene expression values were log transformed to achieve a normal distribution. To
identify covariates that influence the expression of each gene, a stepwise discriminant analysis
was performed using CDR, age, gender, disease status, PMI (post mortem interval), RIN (RNA
integrity number), and APOE genotype. After applying the appropriate covariates to the
model, analysis of covariance (ANCOVA) was used to test for association between genotypes
and gene expression. SNPs were tested using an additive model. All analyses were performed
using statistical analysis software (SAS). Conditional analyses were performed by adjusting for
the most significant eQTL SNP within each IGAP GWAS locus to determine whether the
eQTL SNP represented an independent association. Additional covariates included in the anal-
yses were age, gender, principal components 1–3, and site.

Supporting Information
S1 Fig. No correlation is observed between PILRA, PILRB, and GATS in human brains.
Expression of PILRA, PILRB, and GATS were plotted in laser microdissected neurons.
(PDF)
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