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Mild cognitive impairment (MCI) is a precursor phase of Alzheimer’s disease (AD). As current treatments 
may be effective only at the early stages of AD, it is important to track MCI patients who will convert 
to AD. The aim of this study is to develop a high performance semi-mechanism based approach to 
predict the conversion from MCI to AD and improve our understanding of MCI-to-AD conversion 
mechanism. First, analysis of variance (ANOVA) test and lasso regression are employed to identify the 
markers related to the conversion. Then the Bayesian network based on selected markers is established 
to predict MCI-to-AD conversion. The structure of Bayesian network suggests that the conversion 
may start with fibrin clot formation, verbal memory impairment, eating pattern changing and 
hyperinsulinemia. The Bayesian network achieves a high 10-fold cross-validated prediction performance 
with 96% accuracy, 95% sensitivity, 65% specificity, area under the receiver operating characteristic 
curve of 0.82 on data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The semi-
mechanism based approach provides not only high prediction performance but also clues of mechanism 
for MCI-to-AD conversion.

Alzheimer’s disease (AD), the most common form of dementia, is characterized by progressive neurodegenerative 
disorder1. 36 million people worldwide are affected by AD and the number is expected to almost triple by 20502. 
Many evidences indicate that AD has a years to decade preclinical period followed by a precursor phase termed 
as mild cognitive impairment (MCI)3. As new treatments are likely to be most effective at the early stages of AD, 
it is greatly urgent to track patients with MCI who will develop AD4,5.

Several sensitive imaging modalities such as structural magnetic resonance imaging (MRI) and positron emis-
sion tomography (PET) have been developed5. A number of previous researches have reported that MRI bio-
markers can be used to predict the probability of conversion6–8. However, because some of structural changes may 
not be detected at visual inspection until MCI patients have converted to AD, predictions using MRI biomarkers 
only may not be accurate enough for application in the routine clinical setting or clinical drug trials3,5. Previous 
researches show that combined markers such as MRI and cerebrospinal fluid (CSF) biomarkers can improve 
the prediction accuracy5,9. But CSF sample collection requires lumbar puncture which is too invasive to be used 
as a routine clinical examination. As damage to the blood-brain barrier may occur in AD, this may increase 
movement of proteins between the brain and the blood10. It is therefore possible that AD and its precursor, MCI, 
may be associated with the variation of biomarkers detectable in plasma11. Recent work has demonstrated the 
possibility of predicting MCI-to-AD conversion based on plasma markers12. In addition, blood sample is more 
accessible and suitable for repeated collecting. These make plasma-based biomarkers promising for prediction of 
conversion from MCI to AD.

While the highly sensitive markers are beneficial on the conversion prediction, advanced machine learn-
ing methods can further improve the reliability of approaches. Machine learning is the study of algorithms and 
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computational techniques that use previous examples in the form of multivariate datasets to help make future 
predictions13. A number of machine learning methods such as support vector machines (SVM) and logistic 
regression (LR) have been used to predict the conversion from MCI to AD5,8. Compared with the traditional 
data-driven machine learning methods, Bayesian network has unique advantages that it can quantify the causal 
relationships between the markers, visualize these relationships by the structure of network, and conduct the 
prediction task based on the causal relationships14. These attractive characteristics make Bayesian network a 
semi-mechanism method. On one hand, the semi-mechanism nature of Bayesian network can improve our 
understanding of conversion mechanism. On the other hand, because of the complex etiology and multiple 
pathogenesis of AD, the conversion from MCI to AD is affected by many uncertain factors which makes its pre-
diction a complicated issue15. Bayesian network is especially well-suited to handle the intricacies of the prediction 
because it is designed for representing stochastic events and conducting prediction tasks under uncertainty16,17.

Lots of lectures based on data-driven methods, such as neural network with self-organizing maps (SOM), are 
focused on improving the classification performance and they have showed good performance in the diagnosis 
task. However, the contribution of these methods on improving our understanding of MCI-to-AD conversion 
mechanism is limited. As the semi-mechanism nature of Bayesian network can provide causal relationships of 
markers, this paper proposes a semi-mechanism method based on the combination of Bayesian network and 
lasso regression for not only the high performance of MCI-to-AD conversion prediction but also improving our 
understanding the mechanism of the conversion. The data from Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) is used to develop the model. However, ADNI contains more than 500 biomarkers (including MRI mark-
ers and plasma markers), many of which may not relate to MCI-to-AD conversion. Irrelevant biomarkers may 
interfere the causal relationships identification and reduce the performance of prediction method. Therefore, 
biomarkers selection should be performed before the conversion prediction. In this study, lasso regression is 
proposed to conduct the markers selection, which combines variable selection with an efficient computational 
procedure18. Previous works have shown that lasso regression can enhance the prediction performance of models 
based on high dimension data sets19–21. As such, the combination of Bayesian network and lasso regression is 
proposed not only to conduct the prediction task but also to improve understanding of the AD-to-MCI conver-
sion mechanism. Moreover, after the conversion probability is calculated, a subgroup analysis is performed for 
comparing the network disruption of high-risk patients and low-risk patients.

Results
Biomarkers selection. In this section, the process of biomarkers selection is described. The dataset used 
in this study contains 518 biomarkers (328 MRI markers and 190 plasma markers). 45 biomarkers (1 MRI 
marker and 44 plasma markers) are deleted during data checking due to too many missing entries. 75 biomarkers  
(57 MRI markers and 18 plasma markers) with significant difference between converters and non-converters 
are identified by ANOVA test. 34 biomarkers (25 MRI markers and 9 plasma markers) related to Alzheimer’s 
disease assessment scale (ADAS-cog) are selected by lasso regression. 7 biomarkers (5 MRI markers and 2 plasma 
markers) are eliminated during Bayesian network structure learning because they fail to connect to the Bayesian 
network. In addition, as 2 MRI markers are labeled as “unknown”, they are also eliminated. Finally, 25 biomarkers 
(18 MRI markers and 7 plasma markers) are selected for conversion prediction. The process of biomarkers iden-
tification is summarized in Fig. 1. The list of selected biomarkers is shown in Table 1.

Structure and performance of Bayesian network. In this section, we present the results of Bayesian 
structure learning and the performance of conversion prediction. The Bayesian network structure obtained by 
max-min hill-climbing (MMHC) is given in Fig. 2. It contains 26 nodes and 43 arcs.

In order to evaluate the performance of Bayesian network, a 10-fold cross-validation is performed to estimate 
its accuracy, sensitivity and specificity. Furthermore, the performance of Bayesian network is compared to the 
performances of linear discriminant analysis (LDA) and SOM. The performances of all these methods are evalu-
ated by 10-fold cross-validation. The results are given in Fig. 3. The Fig. 3A shows that the accuracy and sensitivity 
of Bayesian network are higher than those of LDA and SOM with markers selection. In Fig. 3B, the area under 
receiver operating characteristic curve (AUC-ROC) of Bayesian network is much higher than that of LDA and 
SOM with marker selection. Moreover, to evaluate the performance of markers selection, we apply SOM and 
Bayesian network with or without markers selection and compare their performances. With markers selection, 
the classification performances of both SOM and Bayesian network are improved.

Network disruption profile. According to the result of Bayesian network, a group of highest conversion 
probability patients (high-risk group, n =  11) and a group of lowest conversion probability patients (low-risk 
group, n =  48) are drawn from the dataset. 11 biomarkers have significant difference (P <  0.05, ANOVA test) 
between high-risk group and low risk group. The mini network balance map Fig. 4A) shows that the high-risk 
group may suffer from more severe network disruption than the low risk group. The network disruption param-
eters coincide with the mini network balance map. Parameters U and ϕ increase significantly in high risk group 
(P <  0.01, ANOVA test, shown in Fig. 4B) which may suggest that patients with greater U and ϕ may have higher 
conversion risk.

Discussion
In this study, we propose a semi-mechanism based Bayesian network to predict the conversion from MCI to AD. 
The proposed method has two contributions. Firstly, the proposed approach achieves relative high prediction per-
formance. Secondly, as the Bayesian network can learn the causal relationships among biomarkers from the data-
base, these causal relationships can provide some more insight into the mechanism of MCI-to-AD conversion.
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The proposed model is compared to previous researches based on data-driven methods (Table 2). Comparing 
with LDA and SOM, Bayesian network has higher accuracy and sensitivity with markers selection. The high 
sensitivity of Bayesian network may lie in two points. On one hand, the semi-mechanism nature of Bayesian 
network may provide higher performance because it can learn causal relationships from data and combine these 
knowledge and data to conduct the prediction task22. On the other hand, plasma markers may be highly sensi-
tive in conversion prediction12. Though the data-driven methods also achieved high performance, the Bayesian 
network still has its unique advantage. The structure of Bayesian network may contain the causal relationships of 
markers which makes it a semi-mechanism method and provide more information beyond the performance of 
classification.

In addition, with markers selection, the classification performance of Bayesian network is improved. It sug-
gests that Bayesian network should work with an appropriate marker selection strategy. In another words, without 
markers selection, Bayesian network may produce false positive causal relationships which may not only decrease 
the performance but also mislead the MCI-to-AD conversion mechanism investigation. Therefore, combining 
Bayesian network and lasso marker selection strategy is very helpful in improving understanding the conversion 
mechanism and classification performance.

The semi-mechanism nature of Bayesian network is beneficial on investigating the mechanism of conversion. 
Structure of Bayesian network shows that 6 markers including volume of left middle temporal, cortical thickness 
average of right entorhinal, volume of right inferior temporal, AGRP, c-peptide, and fibrinogen may be related to 
the conversion directly. Our result, that destruction of entorhinal is associated with MCI-to-AD conversion, is 
consistent with previous research23. Previous researches had also reported the variations of temporal, c-peptide 
level, and fibrinogen level in AD patients19,24,25. However, our results suggest that these changes may have hap-
pened at MCI stage. It indicates that the conversion from MCI to AD may start with destruction of temporal, 
entorhnal, increased level of AGRP, c-peptide, and fibrin25.

Figure 1. The process of markers selection. 
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Bayesian network identifies the variations of above six markers caused by MCI-to-AD conversion directly. 
But some of these changings may not be the key factors in the conversion. Therefore a reanalysis based on the 

Number Abbreviation Marker Source

1 ST109TS Cortical Thickness SD of Right Posterior Cingulate MRI

2 ST111CV Volume of Right Precuneus MRI

3 ST114TA Cortical Thickness Average of Right Rostral Middle 
Frontal MRI

4 ST11SV Volume (WM Parcellation) of Left Accumbens Area MRI

5 ST121TA Cortical Thickness Average of 
RightTransverseTemporal MRI

6 ST30SV Volume (WM Parcellation) of Left Inferior Lateral 
Ventricle MRI

7 ST31TA Cortical Thickness Average of Left Inferior Parietal MRI

8 ST40CV Volume (Cortical Parcellation) of Left Middle Temporal MRI

9 ST49TA Cortical Thickness Average of Left Postcentral MRI

10 ST52CV Volume (Cortical Parcellation) of Left Precuneus MRI

11 ST56CV Volume (Cortical Parcellation) of Left Superior Frontal MRI

12 ST70SV Volume (WM Parcellation) of Right Accumbens Area MRI

13 ST72CV Volume (Cortical Parcellation) of superior temporal 
sulcus MRI

14 ST83CV Volume (Cortical Parcellation) of Right Entorhinal MRI

15 ST83TA Cortical Thickness Average of Right Entorhinal MRI

16 ST88SV Volume (WM Parcellation) of Right Hippocampus MRI

17 ST91CV Volume (Cortical Parcellation) of Right Inferior 
Temporal MRI

18 ST99CV Volume (Cortical Parcellation) of Right Middle 
Temporal MRI

19 AGRP Agouti-Related Protein (AGRP) Plasma

20 – C-peptide Plasma

21 CRP C-Reactive Protein (CRP) Plasma

22 FGF-4 Fibroblast Growth Factor 4 (FGF-4) Plasma

23 – Fibrinogen Plasma

24 – Insulin (uIU/mL) Plasma

25 MMP-10 Matrix Metalloproteinase-10 (MMP-10) Plasma

26 – Whether patients converts to AD or not –

Table 1.  List of selected markers.

Figure 2. The structure of Bayesian network. It contains 26 nodes and 43 arcs. The nodes in order are: 
ST109TS, ST111CV, ST114TA, ST11SV, ST121TA, ST30SV, ST31TA, ST40CV, ST49TA, ST52CV, ST56CV, 
ST70SV, ST72CV, ST83CV, ST83TA, ST88SV, ST91CV, ST99CV, AGRP, C-peptide, CRP, FGF-4, Fibrinogen, 
Insulin, MMP-10, and “Whether patients converts to AD or not”.
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Figure 3. The performance of five different conversion prediction models. (A) The receiver operating 
characteristic (ROC) curve of Linear discriminant analysis (LDA), self-organizing map (SOM) (with or without 
markers selection) and Bayesian network (with or without markers selection). (B) The performance of LDA, 
SOM (with or without markers selection) and Bayesian network (with or without selection) measured by three 
parameters: accuracy, sensitivity, specificity. All these parameters are evaluated by 10-fold cross-validation.

Figure 4. (A) Network disruption analysis of markers with significant difference between high-risk group and 
low-risk group. In normal state, the shape of radar graph is a regular polygon. With the shape deformation, the 
difference from normal state gets greater. (B) Box plot of parameters U, K, and ϕ. If the value of disruption 
parameters U and ϕ is beyond the horizontal lines in figures, the patient may have more conversion risk.  
* P <  0.05, * * P <  0.01 vs low risk group.
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results of Bayesian network is performed to identify the major factors. The subgroups network disruption pro-
file suggests that the progress MCI patient may suffer from more severe network disruption than stable MCI 
patients. Network disruption may be related to the marker panel including 11 markers. The six markers identified 
by Bayesian network and marker panel related network disruption share three markers: Cortical Thickness of 
Entorhinal, Volume of Temporal and AGRP. These three markers may be the key factors in the conversion. In 
other word, they might be attributed to the warming signals of conversion. Previous researches showed that 
the destruction of entorhinal and temporal is associated with verbal memory impairment and verbal memory 
impairment might be the warming indicator of MCI-to-AD conversion26. In addition, clinical researches have 
reported that AD patients have greater preference for high-fat and sweet food than normal groups. However, our 
results suggested that such change in eating pattern may have happened at MCI stage27,28, as the elevated level of 
AGRP, an orexigenic peptide, in high-risk patients may increase the preference for a high fat diet29.

The crosstalk between cerebral destruction and plasma markers alteration revealed by Bayesian network can 
provide more clues for the mechanism of conversion. The crosstalk between C-peptide and cerebral destruc-
tion may play a vital role in the MCI-to-AD conversion. C-peptide is a measure of insulin secretion. Elevated 
C-peptide level represents high peripheral insulin secretion. It is reported that high peripheral insulin secretion 
can increase the risk of AD. Because high level peripheral insulin secretion impairs amyloid clearance by inhib-
iting brain insulin production which is a beneficial effect on amyloid clearance30. Bayesian network suggests that 
C-peptide may be related to the destruction of middle temporal, entorhinal, and inferior temporal. It suggests that 

Research Included components
Sample 

size Results

Bayesian network (with marker 
selection, this study) MRI +  plasma 365

Accuracy =  96%

Sensitivity =  95%

Specificity =  63%

AUC =  0.82

Bayesian network (without marker 
selection, this study) MRI +  plasma 365

Accuracy =  70%

Sensitivity =  30%

Specificity =  70%

AUC =  0.56

neural network with self-organizing 
maps (SOM) (with marker selection, 
this study)

MRI +  plasma 365

Accuracy =  77%

Sensitivity =  55%

Specificity =  73%

AUC =  0.72

SOM (without marker selection, this 
study) MRI +  plasma 365

Accuracy =  71%

Sensitivity =  48%

Specificity =  55%

AUC =  0.63

Linear discriminant analysis (LDA) 
(with marker selection, this study) MRI +  plasma 365

Accuracy =  63%

Sensitivity =  57%

Specificity =  66%

AUC =  0.66

Linear discriminant analysis (LDA)8 MRI 405

Accuracy =  68%

Sensitivity =  67%

Specificity =  69%

Gularized logistic regression (RLR)42 CSF 335

Accuracy =  53%

Sensitivity =  31%

Specificity =  73%

Domain transfer learning43 PET 99

Accuracy =  71%

Sensitivity =  76%

Specificity =  67%

AUC =  0.74

Multi-task Linear Programming 
Discriminant (MLPD)44 MRI +  PET 202

Accuracy =  67%

Sensitivity =  68%

Specificity =  67%

Logistic regression models5 MRI +  PET +  CSF 97 Accuracy =  72%

low density separation (LDS)40 MRI +  age +  cognitive 
score 394

Accuracy =  82%

Sensitivity =  87%

Specificity =  74%

AUC =  0.9

Table 2.  Comparisons to other methods.
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amyloid may mainly aggregate in the above three regions at the MCI stage which may aggravate their damage. 
As all above three regions are involved in verbal memory, high level of C-peptide may impair to verbal memory 
which was confirmed by previous works26,31–33.

In summary, the analysis of Bayesian network shows that the conversion from MCI to AD may start with 
multiple pathological changes such as verbal memory impairment, vascular abnormalities, hyperinsulinemia and 
eating pattern change. In this study, a high performance semi-mechanism based approach is developed to predict 
the conversion from MCI to AD by combining MRI and plasma markers. The semi-mechanism based approach 
provides not only high performance prediction but also more insight into the mechanism of conversion from 
MCI to AD.

Subject and Method
Subject. Patients. In this study, the following criteria are used to select subjects for model developing:

•	 Patients with baseline MRI scan records
•	 Patients with baseline plasma-based biomarker data
•	 Patients with baseline ADAS-cog scores
•	 Patients with MCI due to Alzheimer’s disease
•	 Patients with diagnosis records which can be used to determine whether they convert from MCI to AD in 18 

months

Finally, a data set with complete imaging, plasma-based biomarkers, ADAS data is drawn from ADNI includ-
ing 316 MCI patients (99 converters and 217 non-converters). The demographic information of subjects is given 
in Table 3.

Imaging biomarkers. Imaging data in this study is obtained from dataset UCSF—Cross-Sectional FreeSurfer 
(FreeSurfer Version 4.3). The dataset is available at https://ida.loni.usc.edu/pages/access/studyData.jsp. In this 
dataset, all scans were acquired on 1.5 T MRI scanners. The imaging data were processed and analyzed with 
FreeSurfer 4.3 by the UCSF team. The dataset includes 328 MRI biomarkers which can be grouped into 5 cate-
gories: average cortical thickness, standard deviation in cortical thickness, the volumes of cortical parcellations 
(based on regions of interest automatically segmented in the cortex), the volumes of specific white matter parcel-
lations, and the total surface area of the cortex. Details of the analysis procedure are available at http://adni.loni.
ucla.edu/research/mripost-processing/.

Plasma-based biomarkers. The plasma-based biomarker data is obtained from dataset Biomarkers Consortium 
Plasma Proteomics Project RBM multiplex data. The data is available at https://ida.loni.usc.edu/pages/access/
studyData.jsp. The data was acquired by analyzing a subset of plasma samples from the ADNI cohort in a 190 
analyte multiplex immunoassay panel. The panel, referred to as the human discovery map, was developed on 
the Luminex xMAP platform by Rules-Based Medicine (RBM) to contain proteins previously reported in the 
literature to be altered as a result of cancer, cardiovascular disease, metabolic disorders and inflammation. Details 
of the assay technology and validation has been described elsewhere (http://adni.loni.ucla.edu/wp-content/
uploads/2010/11/BC_Plasma_Proteomics_Data_ Primer.pdf).

Method. Considering that ADNI contains more than 500 biomarkers, it is essential to select the more predic-
tive biomarkers to obtain a parsimonious model and avoid the classifier suffering overfitting. Then the Bayesian 
network is established based on the causal relationships among selected markers for predicting the AD-to-MCI 
conversion. Finally, a reanalysis of Bayesian network results is performed to profile the network disruption of 
the patients with highest probability of converting to AD and those with lowest probability. The framework is 
summarized in Fig. 5.

Biomarkers selection. Biomarkers selection includes two stages. At the first stage, ANOVA test is employed to 
screen biomarkers with significant difference (P <  0.05) between converters and non-converters. At the second 
stage, lasso regression is used to filter biomarkers related to ADAS-cog from the selected biomarkers at the first 
stage.

Lasso regression is a popular technique for feature selection which can continuously shrinks coefficients34. It 
drops biomarkers by shrinking some of coefficients to zero. In this study, a Least Angle Regression (LARS) algo-
rithm is used to solve lasso35.

MCI Converters Non-Converters

Number 316 99 217

Age 74.68 ±  7.23 74.72 ±  7.25 74.67 ±  7.25

Gender (male/female) 206/110 58/41 148/69

ADAS-cog (85 points total) 18.63 ±  6.36 22.36 ±  4.56 16.94 ±  4.84

Table 3.  Subjects demographic information.

https://ida.loni.usc.edu/pages/access/studyData.jsp.
http://adni.loni.ucla.edu/research/mripost-processing/
http://adni.loni.ucla.edu/research/mripost-processing/
https://ida.loni.usc.edu/pages/access/studyData.jsp.%20
https://ida.loni.usc.edu/pages/access/studyData.jsp.%20
http://adni.loni.ucla.edu/wp-content/uploads/2010/11/BC_Plasma_Proteomics_Data_%20Primer.pdf
http://adni.loni.ucla.edu/wp-content/uploads/2010/11/BC_Plasma_Proteomics_Data_%20Primer.pdf


www.nature.com/scientificreports/

8Scientific RepoRts | 6:26712 | DOI: 10.1038/srep26712

Bayesian network. Considering that the causal relationships among the selected markers may remain unknown, 
a Bayesian network structure learning algorithm termed as the max-min hill-climbing (MMHC) is employed to 
learn the causal relationships among the selected markers. MMHC algorithm is a hybrid method, using concepts 
and techniques from both constraint-based approaches and score-based approaches, which can achieve high 
quality in structure learning36. After the Bayesian network is learned from data, the most popular Bayesian net-
work inference algorithm named junction tree is employed to acquire the conversion prediction37.

Model evaluation. In this study, the receiver operating characteristic (ROC) curve is used to evaluate the perfor-
mance of Bayesian network. The ROC, which has become established as an important tool for classifier evalua-
tion, is a graph of true positive rate (TPR) against false positive rate (FPR) at various operating points as a decision 
threshold38. The area under the ROC curve (AUC) is a measure of predictive ability39. Moreover, three parameters 
termed as accuracy (number of correctly classified samples divided by the total number of samples), sensitivity 
(the number of correctly classified converters divided by the total number of converters) and specificity (the 
number of correctly classified non-converters divided by the total number of non-converters) are calculated and 
evaluated by 10-fold cross-validation for a further measurement for the model performance40.

Network disruption analysis. To get more insight into the mechanism of the conversion, a reanalysis of Bayesian 
network results is performed using a mathematic method for evaluating the disruption of biology network which 
was proposed in our previous research41. In this study, subjects are divided into two subgroups high risk group 
and low risk group according to the results of Bayesian network and a mini network balance model is developed 
to evaluate the network disruption for both high-risk group and low-risk group. The network disruption com-
parison between these two subgroups may provide more insight into the mechanism of AD-to-MCI conversion.

Figure 5. The machine learning framework. 
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The mini network balance model contains three parameters U, K, and ϕ. U is response to both consistency 
variation and inconsistency variation comprehensively. K responds to multi-marker consistency variation. ϕ is 
response to the multi-marker inconsistency variation. These three parameters can be calculated as below:

=K
V

V (1)
risk

normal

ϕ =
⋅− V V

V V
cos

(2)
risk normal

risk normal

1

= − − .U V V V V( )( ) (3)risk normal risk normal
T

Let V risk be the state vector of patients with conversion risk and V normal be the state vector of normal control 
group.
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