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Abstract

Observational research shows that higher body mass index (BMI) increases Alzheimer’s disease 

(AD) risk, but it is unclear whether this association is causal. We applied genetic variants that 

predict BMI in Mendelian Randomization analyses, an approach that is not biased by reverse 

causation or confounding, to evaluate whether higher BMI increases AD risk. We evaluated 

individual level data from the AD Genetics Consortium (ADGC: 10,079 AD cases and 9,613 

controls), the Health and Retirement Study (HRS: 8,403 participants with algorithm-predicted 

dementia status) and published associations from the Genetic and Environmental Risk for AD 

consortium (GERAD1: 3,177 AD cases and 7,277 controls). No evidence from individual SNPs or 

polygenic scores indicated BMI increased AD risk. Mendelian Randomization effect estimates per 

BMI point (95% confidence intervals) were: ADGC OR=0.95 (0.90, 1.01); HRS OR=1.00 (0.75, 
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1.32); GERAD1 OR=0.96 (0.87, 1.07). One subscore (cellular processes not otherwise specified) 

unexpectedly predicted lower AD risk.
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INTRODUCTION

Observational studies indicate high midlife BMI predicts increased risk of Alzheimer’s 

disease (AD), dementia, and memory impairment [1]. This association suggests weight 

management may reduce dementia risk, but the pattern may instead reflect confounding due 

to common causes of BMI and AD. Early life factors, such as cognitive characteristics,[2-3] 

socioeconomic status (SES),[4-5] and environmental toxins[6] potentially influence both 

BMI and AD risk. These factors are difficult to control in observational studies and may 

spuriously inflate associations between BMI and AD. Weight loss often occurs in prodromal 

stages of AD, leading to reverse causation, further obscuring causal effects.[7-8]

Causal effects of BMI on AD can be evaluated using “Mendelian Randomization” (MR) 

analyses, which are useful when reverse causation or confounding are likely.[9-11] In MR 

approaches, genetic variants that influence BMI are treated as a naturally occurring 

experiment in which some individuals, by virtue of their genetic inheritance, are 

“randomized” to higher BMI and others are randomized to lower BMI. As in randomized 

controlled trials, the overarching idea in MR is that randomization leads to differences in 

exposure (BMI) that are not related to confounding factors. MR takes advantage of accidents 

of meiosis – that is, each individual’s inheritance of genes associated BMI is random. These 

genes are inherited independently of subsequent lifestyles or diseases unless the genes 

themselves influence such factors. The independence of these lifestyles and diseases from 

the genetic contribution to BMI enables unconfounded evaluations of associations between 

BMI and AD; these evaluations are thought to more closely approximate causal 

relationships because if the assumptions made by MR hold, the influence of confounding 

factors is substantially reduced or eliminated. MR analyses use genetic data to predict BMI, 

and assess associations between predicted BMI and AD. If BMI affects AD risk, then 

genetic factors that increase BMI should also increase AD risk (see further explanation of 

MR in Supplemental Methods 1.1). Because the effects of known alleles on BMI are 

relatively small, the magnitude of the association between BMI-related alleles and AD is 

also expected to be smaller than the association of BMI itself and AD. MR analyses account 

for this by using two stages of regression models to scale the association of BMI-related 

alleles and AD in proportion to the effect of these alleles on BMI.

In most MR studies, including analyses presented here, the genetic variants explain a small 

percentage of variance in measured phenotypes. The primary goal of MR is to avoid bias, 

even if there are unmeasured common causes of BMI and AD. The tradeoff for reducing 

bias is imprecise effect estimates. Combining information on multiple variants into 
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polygenic scores improves precision, but null MR results are most convincing if they are 

from large samples.

We conducted MR analyses of associations between BMI and AD-related phenotypes using 

data from the AD Genetics Consortium (ADGC) and the Health and Retirement Study 

(HRS). We used published results from GERAD1 to provide a 3rd independent sample.[12] 

From the pool of BMI related variants, we defined 4 mechanism-specific genetic subscores 

and derived subscore-specific effect estimates.[13] We hypothesized that BMI increases AD 

risk and that therefore the BMI polygenic scores and subscores would predict higher risk of 

AD-related outcomes.

METHODS

Sample 1: ADGC

The ADGC includes data from 19,692 individuals (10,079 AD cases and 9,613 cognitively 

normal elderly controls documented not to suffer from mild cognitive impairment) from 15 

different studies, as previously published[14] and summarized in Supplemental Methods 1.2. 

Websites for each study are detailed in Supplementary eTable 1. Each study in the ADGC 

consortium genotyped using platforms from Illumina or Affymetrix and directly genotyped 

APOE. Each dataset was imputed to the HapMap build 132 reference panel.

Sample 2: HRS

The HRS is a nationally representative cohort with enrolments in 1992, 1993, and 1998. 

Biennial interviews (or proxy interviews for decedent or impaired participants) are available 

through 2010.[15-17] From 12,123 HRS participants with genetic data, we restricted 

analyses to 8,403 with self-reported European ancestry. Genotyping was completed on an 

Illumina platform and imputed to the 1000 Genomes reference panel (details in 

Supplemental Methods 1.3).

Sample 3: GERAD1

The GERAD Consortium included 3,177 AD cases and 7,277 controls confirmed to be free 

of dementia. Studies genotyped using various platforms and the dataset were imputed to the 

1000 genome reference panel. We reanalyzed published data from GERAD1 [12] (see 

Supplemental Methods 1.4).

Outcome Measures

All ADGC cases met NINCDS-ADRDA criteria for definite, probable, or possible AD[18], 

and all controls were cognitively normal elders. In HRS, we considered two outcomes. We 

used a previously developed dementia probability score (probability individual meets DSM-

IV criteria) that integrates proxy and direct cognitive assessments[19]. We also used 

memory outcomes comprising word list recall and proxy assessments averaged across up to 

9 assessments.[17, 19] GERAD1 cases met criteria for probable (NINCDS-ADRDA, DSM-

IV) or definite (CERAD) AD.[12]
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BMI polygenic score generation

A previous meta-analysis of BMI genome wide association studies in 249,796 individuals 

identified 32 SNPs associated with BMI.[13] Following Richmond et al. [20], we used these 

genome-wide significant SNPs and the associated β weights from the published meta-

analysis [13] to construct polygenic scores in ADGC (where 31 of the SNPs were available), 

and HRS (29 SNPs were available). For each individual i we calculated BMI polygenic 

scores, using an additive genetic model, as the sum across k SNPs of the product of the β 

weight for the effect of that SNP on BMI by the individual’s allele count for that SNP:

(1)

In exploratory analyses, we assigned each gene to one of four functional categories to 

generate mechanism-specific subscores after a literature review in PubMed: adipogenesis 

(adipocyte differentiation and fat accumulation, e.g. rs3817334 (MTCH2) with HDL-

cholesterol levels[21]), appetite (regulation of appetite and food intake, e.g. rs10767664 

(BDNF) with total caloric intake[22]), cardiopulmonary factors (cardiomyogenesis, 

oxidative stress response and cardiac remodeling, e.g. rs1310732 (SLC39A8) with diastolic 

blood pressure[21]), and BMI-related processes not otherwise specified (groupings and 

supporting references are shown in Supplemental eTable 2).

Statistical analysis

As evidence for the validity of the MR analyses, we first used linear regression models to 

confirm that our polygenic scores predicted BMI in two ADGC studies with available BMI 

data (Adult Changes in Thought [ACT] and Religious Orders Study/ Memory and Aging 

Project [ROS-MAP]), and in HRS. We confirmed that BMI polygenic scores are 

independent of age and sex.

In our primary MR analyses, we used each SNP and BMI polygenic scores to predict AD 

(ADGC) or dementia probability (HRS) in logistic regression models to estimate odds ratios 

(ORs) and 95% confidence intervals (CIs). All models accounted for population 

stratification with 3 principal components for ADGC and 6 for HRS. ADGC models 

included terms for each of the 15 studies and HRS models included age and sex. In HRS, we 

used linear models for the memory outcome.

We performed over-identification tests, a standard approach to evaluating MR analyses,

[23-25] by comparing effect estimates from the 4 mechanism-specific polygenic scores. If 

associations between mechanism-specific scores and AD risk are statistically different, this 

would imply either a direct pathway linking genetic variants to AD that is not mediated by 

BMI, or that the different genetic subscores influence distinct types of adiposity, which in 

turn have distinct consequences on AD.

We repeated overall and mechanism-specific analyses using results from a recently 

published study from the GERAD Consortium.[12] We estimate the MR based OR for the 

effect of BMI on AD using an inverse variance weighted approach[26] in GERAD and 

meta-analyzed ADGC and GERAD1 results, as both these consortia used AD as the 

outcome.
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In addition we investigated non-linear effects of BMI on AD and dementia by backing out 

the genetically predicted BMI from the measured BMI in HRS and ROS-MAP.[27] We 

subsequently divided this new “environmental” BMI into three strata (Environmental BMI 

<20, 20 - <30, >30) and included this variable as an interaction term when predicting AD 

and dementia using the BMI polygenic score.

All participants in all studies signed consent forms, and review boards have approved the 

present analyses, as detailed in Supplemental Methods 1.6.

All analyses were considered significant using a two-sided α = 0.05 criterion, without 

correction for multiple testing.

RESULTS

Demographic characteristics of study participants are shown in Table 1. In HRS, mean BMI 

was 27.4 Kg/m2 (SD = 5.08); only 65 (0.7%) participants were underweight (BMI < 18.5), 

2879 were (34.3%) normal weight (BMI: 18.5 – 25), 3327 (39.6%) were overweight (BMI: 

25-30), and 2133 (25.4%) obese (BMI > 30). BMI polygenic scores predicted a range of 4.0 

(mean=3.37, SD=0.55) BMI points in ADGC and a range of 3.7 (mean=3.87, SD=0.52) 

BMI points in HRS (Table 2). As expected under the analysis assumptions, BMI polygenic 

scores were independent of age (ADGC p-value = 0.48, HRS p-value 0.75) and sex (ADGC 

p-value = 0.87, HRS p-value 0.75). In 3,008 individuals with available BMI measures from 

ACT or ROS/MAP (of whom 615 eventually developed AD), BMI polygenic scores 

significantly predicted measured BMI at study entry (β=0.86; 95% confidence interval [CI] 

0.53, 1.20; p-value < 0.001) and in HRS (β=1.03, 95% CI 0.83, 1.23, p-value <0.001)(Table 

3). As expected in these samples of older people, the gene score explained only a small 

proportion (~1%) of the variance in BMI. Each of the mechanism-specific polygenic scores 

also significantly predicted BMI (Supplementary eTable 3).

None of the genetic variants associated with BMI was associated with AD in ADGC or with 

probability of dementia or memory in HRS after Bonferroni correction (Table 4). Of 

particular note, neither of the BMI-related SNPs (rs4836133, rs713586) previously reported 

to have a nominal association with AD risk in GERAD [12] was associated with AD risk in 

ADGC; nor were they associated with probability of dementia or memory in HRS. Higher 

BMI polygenic scores were non-significantly associated with lower odds of AD (OR= 0.95, 

95% CI: 0.90 - 1.01, p-value = 0.09) in ADGC as a whole (Table 5), and were not 

significantly associated with increased AD risk in any of the 15 studies within ADGC 

(Supplemental Results, eFigure 1). For ADGC, further adjustment for age, sex, and APOE 

ε4 made little difference (Supplemental Results, eTable 4). In HRS, higher BMI polygenic 

scores were not associated with probability of dementia (OR: 1.00, 95%-CI: 0.75, 1.32, p-

value = 0.98) or memory (beta = 0.002, 95%-CI: -0.01, 0.01, p-value = 0.57). In GERAD, 

the BMI polygenic score was not significantly associated with increased AD risk (Table 5, 

OR: 0.96, 95% CI: 0.87, 1.07). Fixed-effects meta-analysis of the ADGC and GERAD 

estimated ORs for the causal effect of BMI on AD was 0.95 (95%-CI: 0.91 - 1.00, p-value = 

0.06) (Table 5).
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The mechanism-specific polygenic scores for Appetite, Adiposity, and Cardio-Pulmonary 

Function were not significantly associated with AD in ADGC or GERAD, or with 

probability of dementia or memory in HRS (Table 5). The “Unspecified BMI-related 

Cellular Processes” polygenic score was associated with lower odds of AD in the ADGC 

(OR: 0.82, 95% CI: 0.72 – 0.92, p-value = 0.001), with lower probability of dementia 

(OR=0.87, 95% CI 0.46-1.66, p value = 0.68) and higher memory scores (β=0.02, 95% CI 

0.00, 0.04, p value = 0.11) in HRS, and with lower AD risk in GERAD (OR: 0.81, 95%-CI: 

0.62, 1.06, p value = 0.13). The forest plot for “Unspecified Cellular Processes” showed 

consistent effects across studies in ADGC and GERAD (Supplementary eFigure 2). The 

fixed-effects meta-analysis of ADGC and GERAD resulted in an OR of 0.81 (95%-CI: 0.74 

- 0.90, p-value < 0.001). The over-identification test rejected the null hypothesis that the 

effect estimates for the 4 mechanism-specific subscores were identical in the ADGC (p-

value = 0.01) but not for dementia probability (p = 0.30) or the memory outcome (p-value = 

0.46) in HRS or for AD in GERAD (p-value=0.13).

In sensitivity analyses we tested whether the top 1000 BMI-increasing SNPs from Speliotes 

et al. were associated with higher dementia risk in our study cohorts. We found no evidence 

of association between this enlarged BMI polygenic score and AD (ROS-MAP, OR: 0.89, 

95%-CI: 0.76 - 1.05), or dementia probability (HRS, OR: 1.03, 95%-CI: 0.94 - 1.12). 

Likewise, comparing the sign of the association with BMI (from GIANT) to the sign for the 

association with AD (from IGAP), we found no significant tendency for SNPs that predicted 

higher BMI also predicted higher AD risk (p=0.24). Results from the evaluation of a 

possible non-linear relationship between BMI and AD or dementia were inconclusive and 

are reported in the appendix (Supplementary eTable 5).

DISCUSSION

We find that a BMI polygenic score predicting a range of almost 4 points in BMI was not 

associated with increased risk of AD-related phenotypes in any of 3 large studies. Indeed, 

point estimates indicate lower dementia risk associated with higher BMI. In exploratory 

analyses, polygenic scores relating to BMI differences induced by appetite, cardiopulmonary 

processes, and adipogenesis polygenic scores had null effects on risk of AD-related 

outcomes. In contrast, a polygenic score for genes influencing BMI via “unspecified cellular 

processes” significantly predicted lower risk of AD related phenotypes.

The link between obesity and dementia has long been controversial. A recent meta-analysis 

[1] concluded that midlife obesity (40-59 years) increases dementia risk. Reducing 

population obesity has therefore been proposed as a promising strategy to reduce the global 

burden of dementia[1, 28-29]. Obesity at older ages has been associated with lower risk of 

AD[30-31], however, an observation that is often attributed to reverse causation (early 

dementia reducing appetite, for example). Caution is warranted, however, because the 

inference that midlife BMI is harmful is based largely on observational studies, which face 

well-recognized methodological difficulties for establishing causality [11]. These limitations 

are especially salient when estimating effects of BMI on AD.
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Because randomized trials of BMI are not feasible, however, until now there has been no 

practical approach to advance beyond conventional observational studies. This challenge 

therefore motivated the current analysis, which is not vulnerable to the same confounding or 

reverse causation bias. Using MR avoids bias even if there is reverse causation. MR also 

avoids bias from measured or unmeasured confounders that may influence both BMI and 

AD, such as childhood SES. Although all epidemiologic studies must rely on strong 

assumptions to support causal inferences, the MR approach we present here offers a 

powerful tool to evaluate causal hypotheses and is an important step forward with the goal 

of a triangulation of evidence. MR can uncover risk factors even if the critical etiologic 

period occurs prior to study enrollment.[32-34] The BMI estimate derived here probably 

best corresponds with a lifelong difference in BMI, incorporating early and midlife 

differences. Our results suggest the simplistic view -- that elevated BMI increases dementia 

risk – may be misguided.

Our findings are consistent with two possible interpretations. One is that BMI does not 

affect AD risk, and previous findings are due to uncontrolled confounders. Another 

possibility is that BMI is a multi-faceted exposure capturing different dimensions of 

adiposity, and these different dimensions have distinct effects on dementia risk. This latter 

interpretation is consistent with evidence that BMI is influenced by heterogeneous 

physiologic characteristics, for example including both lean and fat body mass and 

peripheral and central adiposity.[35-36]

MR analyses rely on three assumptions: the genes must predict the phenotype of interest 

(e.g., BMI); there must be no direct pathway from the genes to the outcome not mediated by 

the phenotype (i.e., no pleiotropic effects of the BMI related genes on AD); and there must 

be no common causes of the genes and the outcome (e.g., genes in linkage disequilibrium 

with the BMI alleles that themselves influence AD). Although assumptions of MR analyses 

merit careful scrutiny[23], the most plausible violations of these assumptions seem unlikely 

to account for our findings. Extensive prior evidence supports the first assumption, that the 

BMI polygenic score predicts life course BMI of participants. We used only SNPs 

previously shown to predict BMI at genome-wide significance thresholds and confirmed that 

our polygenic score predicted BMI in HRS, ACT, and ROS/MAP. The second assumption, 

that the variants used in the polygenic score have no direct pathways via which they 

influence AD except through BMI, cannot be proven. Nevertheless, there is strong 

supporting evidence. For example, recent findings of Hinney et al, showed only two BMI-

related SNPs had a suggestion of a direct effect on AD (neither survived Bonferroni 

correction) [12]. These SNPs were not associated with AD in ADGC or dementia in HRS. 

This does not conclusively prove the validity of our approach, but we note that even if there 

is modest pleiotropy, it is unlikely to explain our unexpected null associations. To explain 

the discrepancy between our results and observational findings, there must be variants that 

increase BMI but decrease AD risk. Nonetheless the assumption that there is no direct 

relationship between our BMI variants and AD requires scrutiny and replication of our 

findings is needed. The third MR assumption (no unmeasured common causes of the genetic 

variants and AD) is generally least controversial because conceptually most AD risk factors 

are temporally subsequent to genetic background and therefore few risk factors are plausible 
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causes of the genetic variants. However, this assumption could be violated, for example, if 

parental genotype on the loci in our BMI polygenic scores influenced participants’ SES, 

which influenced AD risk. Given associations between SES and BMI, this seems possible, 

but unlikely to explain our results because any effects would bias towards associations 

between higher BMI and increased AD risk (whereas we found non-significantly reduced 

risk).

One caveat to our analyses is that BMI may be relevant for AD only above a certain 

threshold. The BMI polygenic score shifts the entire distribution of BMI, so it is associated 

with increased risk of being above any particular threshold (e.g., BMI>30 or BMI>35). For 

example, each unit on the polygenic score was associated with an OR of 1.50 (95% CI: 1.36, 

1.65) for obesity among HRS participants. Even if the effect of adiposity only occurs above 

a threshold, we would expect the polygenic score to predict higher AD risk. Nonetheless, 

our point estimates should be interpreted cautiously for several reasons [37-39], including 

the lifelong effects of the genetic factors on BMI and the use of a case-control design. These 

factors could not, however, account for the null or protective association between the 

polygenic score and AD if BMI were in fact harmful. Another concern is related to survivor 

bias. Both ADGC and the GERAD1 sample are AD case control studies among older 

individuals. BMI has strong and age-dependent links to mortality[40], thus our samples may 

have included a highly selected subgroup of “survivors” immune to the effects of obesity. A 

very similar bias should apply to conventional observational studies, however, so it is 

unlikely that this bias could explain differences between our results and previous work.

MR can identify potentially heterogeneous effects of different dimensions of adiposity 

influenced by variants in different genes, even if these differences in adiposity were not 

directly measured. This is extremely appealing because the limitations of BMI are widely 

acknowledged.[35-36, 41]. MR estimates are specific to the phenotype influenced by the 

variants used in the analysis. We found evidence that a set of genetic variants associated 

with higher BMI may slightly reduce AD risk. This result was surprising, but if confirmed 

elsewhere, it could provide powerful insights into the origins of dementia and the link with 

adiposity. We consider the finding with respect to subscore effects to be exploratory, 

particularly because of the uncertainty in the causal genes associated with each SNP[42]. 

For example, recent findings from Smemo et al. suggest that the effects of the SNPs 

identified in intronic regions of the FTO locus in fact regulate expression of the IRX3 locus, 

rather than FTO. Our allocation of these SNPs to the “appetite” subscore was due to 

evidence that FTO expression regulates appetite and that the SNPs correlated with dietary 

intake, including selection of energy dense foods.[43-45] IRX3, however, is hypothesized to 

influence obesity via energy homeostasis, calling into question whether these SNPs should 

be classified as operating via an “appetite” mechanism. [46]

An important strength of this paper is that we derived the BMI polygenic score from SNPs 

identified in an external dataset. The proportion of variance in observed BMI explained by 

the BMI polygenic score was small. Nevertheless, since SNPs and their weights were 

derived externally, concerns of “weak instruments bias” are eliminated.[38, 47] Consistency 

of findings across 3 samples is another notable strength. Statistical power is a common 
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limitation in MR analyses, but the CIs in our analyses are informative and exclude any but 

very tiny harmful effects of BMI.

In summary, our finding that polygenic scores strongly related to higher BMI are unrelated 

to dementia risk and may even predict lower dementia risk is surprising, given prior 

observational evidence linking BMI and AD. Replication of this result in independent 

samples, and analyses to evaluate the assumptions of the MR approach for this research 

question are needed. These MR results, if confirmed, would suggest greater complexity in 

the link between adiposity and AD than previously understood.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Systematic Review

Previous research links elevated Body Mass Index (BMI) and other measures of obesity 

to increased risk of Alzheimer’s disease (AD) and dementia, but all prior studies are 

based on similar, observational, study designs. Observational study designs may be 

biased because unmeasured confounders influence both obesity and dementia risk.

Interpretation

We used a new study design, “Mendelian Randomization”, to test whether obesity affects 

dementia or AD. We combined information on multiple genetic differences that predict 

higher BMI into a score for genetically induced BMI. The genetic score for higher BMI 

did not predict risk of AD or dementia in any of three samples, and one subscore 

unexpectedly appeared protective. Results suggest BMI may not substantially increase 

dementia risk. Some aspects of adiposity may even protect against dementia.

Future Directions

Future studies should focus on alternative study designs to evaluate the causal links 

between adiposity and dementia.
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Table 1
Demographic characteristics of participants in each ADGC contributing dataset and the 
HRS Study

STUDY Sample size Sex (% male) Age, mean (SD)

Total Cases Controls

ADGC TOTAL 19,692 10,079 9,613 40.7 76.0 (7.9)

 ACT 2,247 562 1,685 42.5 81.8 (5.9)

 ADC 1+2+3 4,325 3,112 1,213 44.0 74.4 (8.3)

 ADNI 413 253 160 58.8 76.6 (6.7)

 GenADA 1,256 603 653 39.8 74.5 (6.7)

 MAYO 1,880 724 1,156 46.4 73.5 (4.6)

 MIRAGE 588 358 230 37.9 71.8 (6.8)

 NIA-LOAD 1,614 691 923 38.1 74.8 (7.6)

 OHSU 279 128 151 42.3 85.9 (6.9)

 ROS-MAP 1,049 286 763 28.2 83.0 (7.0)

 TGEN2 1,210 770 440 40.4 79.2 (8.7)

 UM/VU/MSSM 2,263 1,149 1,114 36.9 74.0 (8.1)

 UPITT 2,087 1,262 825 36.8 74.1 (6.5)

 WU 481 309 172 41.6 75.2 (8.2)

HRS TOTAL 8403 - - 41.0 68.7 (10.4)

Abbreviations: ACT - Adult Changes in Thought Study, ADC - National Institute on Aging AD Centers, ADNI - AD Neuroimaging Initiative, 
GenADA - Genotype-Phenotype Associations in AD Study, MAYO - Mayo Clinic, MIRAGE - Multi-Institutional Research in Alzheimer’s 
Genetic Epidemiology Study, NIA-LOAD - NIA Late Onset AD Study, OHSU – Oregon Health and Science University, ROS-MAP - Rush 
University Religious Orders Study/Memory and Aging Project, TGEN2 - Translational Genomics Research Institute series 2, UM/VU/MSSM 
University of Miami/Vanderbilt University/Mt. Sinai School of Medicine, UPITT - University of Pittsburgh, and WU - Washington University, 
HRS – Health and Retirement Study.
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Table 3
Linear regression coefficients for associations between BMI polygenic scores and 
measured BMI in ADGC (ACT, ROS-MAP) and HRS

N β 
95% Confidence

Interval P-value

ACT + ROS-MAP

 All 3,008 0.86 (0.53, 1.20) < 0.001

 Controls 2,393 0.95 (0.57, 1.33) < 0.001

 AD Cases 615 0.48 (−0.18, 1.14) 0.16

ACT

 All 1,991 0.51 (0.12, 0.91) 0.01

 Controls 1,647 0.64 (0.19, 1.09) 0.01

 AD Cases 344 −0.01 (−0.82, 0.82) 0.99

ROS-MAP:

 All 1,017 1.59 (0.98, 2.19) < 0.001

 Controls 746 1.7 (0.05, 2.24) < 0.001

 AD Cases 271 1.15 (0.99, 2.42) 0.04

HRS 8403 1.03 (0.83 1.23) < 0.001

Abbreviations: ACT - Adult Changes in Thought Study, ROS-MAP - Rush University Religious Orders Study/Memory and Aging Project, BMI - 
body mass index, AD – Alzheimer’s Disease; “Controls” refers to individuals who never developed dementia during follow-up, while “AD Cases” 
refers to people who developed incident AD during the study period; β = difference in BMI associated with a unit change in the BMI polygenic 
score.
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