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Abstract

We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation 

contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on 

chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were 

identified by separate research groups as risk alleles for non-Alzheimer’s neurodegeneration. We 

found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) 

pathology among people with the rs704180 risk genotype (National Alzheimer’s Coordinating 

Center/Alzheimer’s Disease Genetic Consortium data; n=2,113, including 241 autopsy-confirmed 

HS cases). Further, both rs704180 and rs73069071 risk genotypes were associated with 

widespread brain atrophy visualized by MRI (Alzheimer’s Disease Neuroimaging Initiative data; 

n=1,239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk 

genotypes were associated with variation in expression of ABCC9, a gene which encodes a 

metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with 

altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain 

gene expression databases indicated that the chromosome 12p12 locus may regulate particular 

astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). 

This is informative biologically because the SLCO1C1 protein transports thyroid hormone into 

astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid 

hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS 

pathology. Total T3 levels in CSF were elevated in HS cases (p<0.04 in two separately analyzed 

groups), but not in Alzheimer’s disease cases, relative to controls. No change was detected in the 

serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We 

conclude that brain thyroid hormone perturbation is a potential pathogenetic factor in HS that may 

also provide the basis for a novel CSF-based clinical biomarker.
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Introduction

Hippocampal sclerosis (HS), characterized by cell loss and astrocytosis in the hippocampus 

[53, 65], is a common finding at autopsy of old persons [14, 47, 65, 100]. HS pathology is 

not specific to a particular disease process, so the underlying condition is diagnosed 

according to other clinical and pathological manifestations [25, 29]. Here we focus on 

individuals with amnestic dementia in advanced old age, in whom both HS and comorbid 

TAR DNA-binding protein 43 (TDP-43) pathology, but not advanced Alzheimer’s-type 

plaques and tangles, are seen at autopsy [2, 3, 45, 64, 70, 97]. Terms previously used to 

describe these cases include HS-Aging, HpScl, and HS dementia [1, 4, 14, 64]. However, 

terminology that focuses on HS is suboptimal because extensive pathology (and/or atrophy) 

exists outside of the hippocampus in this condition [15, 40, 43, 68, 69], and the term HS is 

far more commonly applied in the scientific literature to a different disease category – 

epilepsy. Thus a new diagnostic term was required to facilitate progress in the field.

We proposed a descriptive designation, “Cerebral age-related TDP-43 with sclerosis” 

(CARTS) [66]. The new terminology reflects that there is a distinct disease that 

preferentially affects persons in advanced old age and TDP-43 pathology is a relatively 

specific marker. These characterizations were based on clinical-pathologic correlation, 

neuroimaging, and genetic data [66].

CARTS has a large impact on public health according to studies from multiple high-quality 

autopsy series [65, 66, 100]. The disease affects approximately 20% of persons in advanced 

old age [47, 64, 69, 101], and is associated with substantial cognitive impairment [11, 58, 

60]. A group-level neurocognitive profile for CARTS patients has been described [64] and 

replicated [11]. However, CARTS tends to be misdiagnosed in the clinical context as 

Alzheimer’s disease (AD) because of overlapping symptoms [11, 64, 74], so autopsy data 

are essential for accurate disease diagnosis. Although CARTS appears to be a brainwide 

disease [15, 40, 43, 68, 69, 73], retrospective analyses (including the current study) mainly 

recognize HS, in the appropriate context, for indicating CARTS-type pathology.

Research on CARTS is evolving rapidly, yet there is no validated therapeutic strategy or 

clinical biomarker. In structural neuroimaging studies, hippocampal atrophy was more 

severe in cases with CARTS-type pathology than in AD [19], and frontal lobe atrophy was 

discernible in a retrospective study [43]. In terms of pathogenesis, chronic cerebrovascular 

disease may contribute to CARTS, and, in addition or alternatively, pathogenetic factors may 

overlap with FTLD [23, 63, 65, 100, 101].

Gene variants associated with CARTS-type pathology may provide insights into the 

mechanisms underlying the disease. Single nucleotide polymorphisms (SNPs) associated 

with altered risk for CARTS-type pathology have been reported in the following four genes, 

in the chronological order of their discovery: granulin (GRN), transmembrane protein 106B 
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(TMEM106B), ATP-binding cassette, sub-family C, member 9 (ABCC9), and potassium 

calcium-activated channel subfamily M regulatory beta subunit 2 (KCNMB2) [4, 5, 22, 24, 

57, 61]. In contrast to AD, apolipoprotein E (APOE) alleles were not associated with altered 

risk for CARTS-type pathology [11, 47, 64, 94].

The first published genome wide association study using CARTS-type pathology as an 

endophenotype reported that two intronic SNPs in near-perfect linkage disequilibrium (LD) 

with each other (rs704178 and rs704180), in the ABCC9 gene, were associated with 

CARTS-type pathology [61]. For practical reasons, we refer to rs704180 hereafter. The 

association between rs704180 and CARTS-type pathology was confirmed in a separate 

group of subjects [67].

Studies from multiple research centers have implicated the region of the human genome 

where ABCC9 is located (chromosome 12p12; Fig. 1) in neurodegenerative conditions. Two 

main points have emerged: 1. Genomic markers in and near chromosome 12p12 were linked 

to dementia risk, particularly among APOE ε4-negative persons [16, 52, 75, 84]; and, 2. 

Specific SNPs near the ABCC9 gene were associated with altered risk for developing non-

AD neurodegenerative disease phenotypes [27, 73]. Notably, Roostaei and colleagues [80] 

discovered that a SNP (rs73069071), which is ~500 kilobase-pairs (kbp) away from ABCC9, 

is associated with a phenotype of brain atrophy out of proportion to Aβ amyloid deposition.

We hypothesized that SNPs in the ABCC9 genomic region have an impact on gene 

regulatory mechanism(s) relevant to CARTS. To gain insights into those mechanisms, we 

analyzed human subjects’ data across a variety of contexts. Genomics data from the AD 

Genetics Consortium (ADGC) were correlated with clinical and pathologic data from the 

National Alzheimer’s Coordinating Center (NACC) database [6, 7, 32, 59]. We also 

correlated genomics data from AD Neuroimaging Initiative (ADNI) with magnetic 

resonance imaging (MRI) scans to confirm that risk alleles are associated with brain atrophy. 

Additional databases were evaluated to query the association between the risk alleles and 

human brain gene expression. Finally, we assayed thyroid hormone (TH) levels in 

cerebrospinal fluid (CSF) and in serum samples from the University of Kentucky AD Center 

(UK-ADC) biobank. Collectively, these analyses and experiments implicated TH 

perturbations in CARTS.

Materials and Methods

Analyses were performed on data obtained from multiple sources (Table 1). Written 

informed consent was obtained at the time of enrollment and/or genetic sample collection, 

and protocols were approved by each participating study and the respective sites’ 

Institutional Review Boards (IRBs). For more information on the data sources and IRBs, 

please see Acknowledgments in Supplemental Material. The data sources were mostly 

public-domain data repositories that included genomics. For two of these resources – termed 

BrainCloud and NABEC – University of Kentucky IRB and data access applications were 

required through the database of Genotypes and Phenotypes (dbGaP; https://

www.ncbi.nlm.nih.gov/gap). In addition to in silico analyses, new experiments were also 
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performed using biosamples (CSF and sera) from patients followed and autopsied at the UK-

ADC.

Association between risk SNPs and human neurodegeneration

ADGC/NACC neuropathology data—The ADGC accrued genomics data from 29 

different AD Centers (ADCs) as described in detail previously [67]. Briefly, multiple 

iterations of SNP data [32, 44] were analyzed together with neuropathological and clinical 

data gathered through NACC [6]. Genomic data from ADGC were transferred from PLINK 

format, with subsequent analyses performed using R 3.3.1 [91]. NACC data were obtained 

from the Minimum Data Set, Uniform Data Set, and Neuropathology Data Set [6, 11]. 

Neuropathologic evaluations were performed according to center-specific protocols -- 

including whether neuropathologists studied left, right, or bilateral hippocampi -- and 

entered into a standardized format. Details of CARTS-type pathology case/control 

operationalization in NACC were described previously [11, 61, 67]. Briefly, all included 

individuals died after 80 years of age. FTLD-TDP, other FTLD subtypes, and prion 

pathology cases were excluded from the analyses. For persons that died after 2013, the most 

recent NACC neuropathology form (v10) was used (https://www.alz.washington.edu/

NONMEMBER/NP/npform10.pdf). For these subjects, HS pathology as defined previously 

[67] with addition of the “NPHIPSCL” parameter. More details on inclusion/exclusion 

numbers are reported in Supplemental Material.

ADNI neuroimaging data—Information about the research subjects, genotyping, scan 

methods, and statistical analyses for the correlation between genetics and neuroimaging data 

in ADNI were as described in detail previously [73]. Briefly, the study included non-

Hispanic Caucasians in order to limit the impact of population stratification on association 

analysis (removing 140 participants). Genotyping was performed using the Illumina 

Human610-Quad BeadChip for the ADNI-1 participants, and the Illumina HumanOmni 

Express BeadChip and Illumina Omni2.5M BeadChip for participants initially enrolled in 

ADNI-GO or ADNI-2. SNPs were imputed separately in each phase as the ADNI cohort 

used different genotyping platforms. Before the imputation, standard sample and SNP 

quality control procedures were performed as described previously [71]. T1-weighted brain 

MRI scans were acquired using a sagittal 3D MP-RAGE sequence following the ADNI MRI 

protocol [35]. As detailed in previous studies [73, 78], FreeSurfer V5.1 software was utilized 

to extract brain-wide MRI-based imaging endophenotypes and the SurfStat software 

package to perform an unbiased whole brain surface-based analysis applying a general linear 

model (GLM) approach. GLMs were developed using age at baseline, gender, years of 

education, intracranial volume (ICV), diagnosis at baseline, MRI field strength, and SNP as 

independent variables. In the whole brain surface-based analysis, the adjustment for multiple 

comparisons was performed using the random field theory correction method at a 0.05 level 

of significance.

Testing implications of chromosome 12p12 risk genotypes

Braineac data set analyses—Data were obtained from the Braineac website, (http://

caprica.genetics.kcl.ac.uk/BRAINEAC/), which used an experimental pipeline described in 

Refs [76, 92]. Data from the Braineac data set comprise gene expression data from 10 brain 
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areas (hippocampus, frontal cortex, temporal cortex, occipital cortex, substantia nigra, 

frontal white matter, thalamus, putamen, medulla, and cerebellum) from 134 autopsied 

individuals, probed with 1,231 Affymetrix Exon 1.0 ST microarrays, and the same persons’ 

SNPs were characterized using an Illumina Omni 1M Immunochip platform. For the current 

study, the downloaded genomic data were analyzed using R 3.3.1 [91] using base packages 

and, for testing SNP/gene expression associations, the MatrixEQTL package [86] was used.

Human brain cell type specific expression of ABCC9 and SLCO1C1—Data from 

laser capture microdissection experiments from human temporal neocortex, followed by 

single cell RNA sequencing, from Ben Barres’s laboratory [17], are available online using a 

searchable web interface (Table 1). For this resource, no additional data were downloaded or 

analyzed further.

Gene expression in human brain: associations between TH sensitivity, 
chromosome 12p12 SNPs, and correlation with ABCC9 and SLCO1C1 
expression—We tested whether astrocyte-expressed genes upregulated after exposure to 

triiodothyronine (T3) also showed gene expression that was correlated with SNPs that affect 

ABCC9 and SLCO1C1 expression. The genes upregulated after exposure to T3 in astrocytes 

were identified in mice cultured brain cells by Gil-Ibanez et al [28]. We hypothesized that 

there would be concerted expression of these genes in human brains. To test this hypothesis, 

genes enriched after T3 treatment among astrocyte-expressed genes were compared to 

astrocyte-expressed genes that were not shown to be enriched after T3 exposure. 

Specifically, we tested the 15 highly-expressed astrocyte genes that were the most enriched 

following T3 exposure (fold-change relative to controls) in the Gil-Ibanez study. Gene 

expression data were analyzed from four separate large data sets that contain high-quality 

human brain gene expression data, focusing on adult brains without end-stage AD. Those 

data sets were described by the terms Braineac, BrainCloud, Allen Brain Institute, and 

NABEC (see Table 1). All of the available specimens were included from these sources, 

with the following exceptions: in BrainCloud, only subjects older than 20 years of age at 

death were included (n=148 included from that cohort, all frontal cortex); the same 20 years 

of age cutoff was applied for NABEC (n=166 included from that cohort, all frontal cortex); 

and, for Allen Institute data, we excluded 17 cases with Braak neurofibrillary tangle (NFT) 

stage VI pathology, and used parietal and temporal cortex data (n=158 total samples from 90 

persons included from that cohort). When more than one transcript variant could have been 

selected referent to a given gene, we used the transcript that showed highest mean 

expression across all the samples.

The control (not shown to be induced by T3) astrocyte-expressed genes used for comparison 

were selected based on the most astrocyte-enriched genes from mice brain experiments, 

since the T3-enriched genes also were identified in mice brain cells. We used the searchable 

website http://web.stanford.edu/group/barres_lab/brain_rnaseq.html; Ref [102]. The criteria 

for selecting genes: those genes that were most enriched in astrocytes relative to neurons, 

oligodendrocytes (all types including progenitors), and microglia and had Fragments Per 

Kilobase of exon per Million fragments mapped (FPKM)>50.
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Testing thyroid hormone levels in CSF and sera

CSF samples were analyzed from research volunteers in the UK-ADC autopsy cohort. 

Details of UK-ADC recruitment criteria and clinical assessments have been described [62, 

83]. The focus of the current study was subjects with short postmortem interval (PMI) 

autopsy (<4hrs). To obtain CSF at autopsy, an 18-gauge cannula was inserted into the body 

of the lateral ventricle. The CSF was centrifuged to remove blood cells and particulate 

matter, pipetted into 1.5-ml polypropylene tubes, and stored immediately at −80°C. Serum 

samples were obtained using a 23 or 21 gauge needle during life and stored, without either 

heparin or ethylenediaminetetraacetic acid (EDTA), at −80°C. Pathological assessment 

methodology at the UK-ADC has been described in detail [18, 62, 77, 98]. The criteria for 

HS pathology were neuronal loss and astrocytosis in hippocampal CA1 and subiculum 

regions, not readily ascribable to another pathology such as abundant NFTs or localizable 

infarction [53].

For TH assays, Total Thyroxine (T4) and Total T3 enzyme immunoassay test kits (Aviva 

System Biology, San Diego, CA) were used. Besides those explicitly described below, no 

other samples were evaluated and no other analyses performed on the included samples. All 

assays were performed following the manufacturer’s protocols. Briefly, undiluted specimen 

samples and manufacturer-supplied standard solutions were loaded in triplicate into 

microtiter plate wells. Samples and enzyme-linked immunosorbent assay (ELISA) plates 

were processed blind to clinical and pathological information. Absorbance was measured at 

450 nm using the microtiter plate reader SpectraMax M3 (Molecular Devices Inc., 

Sunnyvale, CA). Calculation of T3 and T4 concentrations was accomplished using SoftMax 

Pro 5.4.1 program (Molecular Devices Inc., Sunnyvale, CA). Data were downloaded to 

Microsoft Excel, unblinded at that point, and GraphPad Prism 6 was used for statistical 

analyses.

Two groups of samples (both including controls) were designated “Cohort 1” and “Cohort 

2”, and these samples were analyzed on separate ELISA plates. Both cohorts were selected 

such that the groups with and without HS pathology would have comparable AD-type 

pathology (by Braak NFT stages [10]), PMI, cognitive status (final Mini-Mental State Exam 

[MMSE] scores), and length of time the samples were stored in the −80°C freezer before 

being analyzed in the current study. These cohorts were non-overlapping and each 

comprised 26 different persons’ CSF, reflecting the number of samples that could be 

assessed in a single 96-well ELISA plate if the samples were analyzed in triplicate along 

with the manufacturer supplied standard samples. A third ELISA plate was analyzed to 

assess serum levels of both T3 and T4 from individuals in Cohort 1 (blood having been 

drawn prior to death), and a subset of the CSF results from the same group.

Research subjects were not included into, nor excluded from, the study based on clinical 

thyroid function, and selection was blind to clinical thyroid status. However, after the ELISA 

analyses were performed, a retrospective database search was performed to determine the 

status of diagnosed thyroid disease in research subjects from Cohort 1 and Cohort 2. Three 

different parameters were obtained: “Self-reported thyroid disease”, derived from a 

questionnaire that the person and/or caregiver filled out, indicating the individual had either 

hypothyroidism or hyperthyroidism diagnosed while being followed in the longitudinal 
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cohort; “Hypothyroid medicine”, which indicated the person was taking either Synthroid or 

some other form of L-thyroxine; and, “Hyperthyroid medicine”, which indicated the person 

was taking methimazole, propylthiouracil, and/or Tapazole. Within each cohort, chi-square 

tests were used to assess equivalence between cases with and without HS pathology with 

regard to thyroid disease and medication use.

Results

Testing association between risk SNPs and human neurodegeneration

ADGC/NACC neuropathology results—We first tested whether rs73069071 was 

associated with HS pathology in a cohort of older (≥80 year old at death) individuals in the 

NACC neuropathology data set with ADGC genomic characterization. We had previously 

identified that rs704180 is associated with HS pathology in the NACC/ADGC cohort [61, 

67], and here the data included information on 138 additional subjects (27 with HS 

pathology) who had died after 2013 and who were not included in prior analyses. In the 

overall cohort (n=2,113), rs73069071 risk genotypes (CC or CT) were associated with HS 

pathology among individuals with the rs704180 risk genotype (AA), p=0.023 (Table 2).

ADNI neuroimaging results—We next tested whether the SNPs rs73069071 and 

rs704180 (independent of rs73069071) were associated with brain surface atrophy detectable 

by structural MRI in older adults from the ADNI cohort (Fig. 2). In the 1,239 included 

participants, the average age at scan was 73.8 years, percentage of participants with APOE 
ε4 allele was 46.0%, and percentage of female participants was 42.7%. The risk genotypes 

for rs73069071 were CC and CT; minor allele frequency (MAF) was 11.8%. The risk 

genotype for rs704180 was AA; MAF was 48.7%. The assumed models of mode of 

inheritance were derived from the published literature [5, 67]. Gene variation at both 

rs73069071 and rs704180 SNPs was associated with widespread brain atrophy as quantified 

using MRI. Consistent with the pathology results from NACC/ADGC (above), the 

comparison of brain atrophy among individuals with rs704180 A_A genotype between those 

with and without the rs73069071 risk (C) allele shows that individuals with both risk 

genotypes have more atrophy in the medial temporal lobes (arrowheads in Fig. 2c). No 

associations were observed between brain atrophy and the non-risk alleles of these SNPs at 

the same statistical threshold (data not shown).

Testing implications of risk SNPs on human brain gene expression

Analyzing the association between chromosome 12p12 SNPs and gene 
expression—The Braineac website (Table 1) identifies the SNP with the strongest 

associations with expression of ABCC9 transcripts across all specimens; this was 

rs4148651, an intronic ABCC9 SNP. The National Institutes of Health/National Cancer 

Institute-sponsored search engine “LDlink” (Table 1) was used to test whether any of the 

three SNPs (rs704180, rs73069071, and rs4148651; Fig. 1) tend to show allelic association 

due to linkage, i.e. are in LD. According to this database, surveyed using “All populations”, 

rs704180 and rs4148651 were in LD, albeit relatively weakly at D’=0.44, r2=0.14. Neither 

rs4148651 nor rs704180 were in LD with rs73069071.
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In the Braineac data set, which had the greatest sample size with 1,231 microarrays 

included, all three SNPs were associated with ABCC9 gene expression (Table 3). For both 

rs704180 and rs73069071, there was a consistent pattern noted as shown on Fig. 3: both 

SNPs were associated with the expression of multiple different ABCC9 exons (associated at 

p<0.05 were 28 probes for rs704180, 35 probes for rs73069071). The SNP rs73069071 was 

associated with gene expression of two additional chromosome 12p12 genes, SLCO1C1 
(Table 3) and PDE3A (data not shown). In addition, rs4148651 was associated with altered 

expression of SLCO1C1 (Table 3). The interactions between the three SNPs (haplotypes) in 

association with gene expression is a complicated bioinformatics challenge that we will 

address in a separate manuscript. Since SLCO1C1 expression was associated with 

SLCO1A2 and ABCC9 SNPs, we focused on a hypothetical gene regulatory mechanism 

related to SLCO1C1 function.

Testing human cell type specific expression of ABCC9 and SLCO1C1—A 

searchable web-based database indicated that both ABCC9 and SLCO1C1 were highly 

expressed in mature astrocytes in the human brain (Fig. 4). Further, each of the transcripts 

were expressed at relatively high levels (88th percentile for ABCC9, 98th percentile for 

SLCO1C1) in these human brain samples.

Assessing astrocyte-expressed genes in public access data sources—Since 

SLCO1C1 encodes an astrocytic TH transporter, we hypothesized that SNPs that change 

expression of SLCO1C1 could alter expression of downstream TH-regulated genes:

Genes that had been identified as astrocyte-expressed and enriched after T3 treatment by 

Gil-Ibanez et al [28] showed gene expression that was associated with SNP status for 

rs4148651 and rs73069071 (Table 4). Further, those same genes showed expression that 

were relatively strongly correlated with both ABCC9 and SLCO1C1 in the human brain 

across four separate high-quality data sets. By contrast, other genes that were enriched in 

astrocytes, but are not known to be T3-sensitive, did not show gene expression that was 

strongly associated with chromosome 12p12 SNPs, and these genes also did not correlate as 

strongly with ABCC9 or SLOC1C1 in the human brain gene expression databases. Note that 

in contrast to the human brain expression data, the T3 responsiveness, and the astrocyte 

enrichment data, were both derived from published studies that used mice brain cells [17, 

102]. Overall, these data are compatible with the hypothesis that T3 hormone regulation in 

the brain is sensitive to chromosome12p12 SNPs, with relatively wide-ranging impact on 

astrocyte gene expression, spanning many chromosomes. In summary, the chromosome 

12p12 SNPs appeared capable of altering TH-mediated astrocytic gene expression.

Testing thyroid hormone levels in CSF and sera

To follow up on the neuropathology, neuroimaging, and genomics analyses, and because 

CSF has previously been shown to contain quantifiable TH [38, 82, 88], we tested whether 

CSF TH levels were changed in cases with autopsy-confirmed CARTS/HS. Six separate 

ELISA plates were used, three each for T3 and T4 analyses, and each of which allowed 26 
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test samples to be evaluated in triplicate along with the manufacturer-supplied samples used 

for generating the standard curves. Two different groups of samples, designated “Cohort 1” 

and “Cohort 2”, were evaluated (Table 5). In both groups, HS+ cases had lower cognitive 

status, approximately the expected amount of global cognitive impairment (operationalized 

by final MMSE scores) that is directly associated with HS pathology in this cohort [60]. 

Although characteristics for HS+ and HS− cases were similar within each cohort, the two 

cohorts had differing characteristics overall -- Cohort 2 had relatively less AD pathology, 

higher cognitive status before death, were older, and the samples were stored longer in the 

freezer before the TH assays were performed.

We first assessed whether the assays’ sensitivity and technical parameters (using ELISA to 

study banked CSF samples in this context) were acceptable (Supplemental Fig. 1). Detected 

levels of TH were within the dynamic range of the assay, as determined using the sample 

standards provided by the manufacturer. Further, there was not a substantial (at p<0.05 level 

of significance) variation in detected T3 or T4 levels associated with PMI, age at death, or 

years of storage in the freezer. There did seem to be technical variance between plate 

readings (change in slope of standard curve resulting in different average values) so we did 

not compare or combine results across different plate readings.

Results of the T3 assays of CSF are shown in Figs. 5 and 6. In both non-overlapping 

experimental cohorts, the levels of total T3 detected were increased in cases with HS 

pathology relative to controls (p=0.030 for Cohort 1, p=0.033 for Cohort 2, both using 

Student’s t-test, 2-tailed, assuming unequal variance). Detected total T4 levels were not 

different for HS+ and HS− cases (p=0.080 for Cohort 1, p=0.95 for Cohort 2). Neither T3 

nor T4 levels were changed in relation to AD pathology, with the caveat that the small 

sample sizes did not enable sufficient statistical power to detect modest differences.

We also evaluated total T3 and T4 levels from serum. These were obtained from a 

convenience subsample of the same research volunteers (Table 6). The serum samples were 

stored at −80°C after having been drawn while the patients were alive, on average 40.9 (HS

+) and 41.8 (HS− cases) months prior to death. In these experiments, a total of 16 serum 

samples (10 HS−, 6 HS+) were available, and were correlated with results for 10 CSF 

samples (5 HS−, 5 HS+) from Cohort 1. As expected, total T4 levels were higher in serum 

(~70 ng/ml) than in CSF (~30 ng/ml), whereas total T3 levels were higher in CSF (~20 

ng/ml) than serum (~8 ng/ml), p<0.0001 for these comparisons. These numbers are best 

interpreted relative to each other since these are not laboratory tests validated for these 

experimental contexts. In contrast to the CSF, where the T3 levels trended higher in the HS+ 

cases, the T3 levels trended slightly lower in the serum samples obtained during life among 

individuals with eventual autopsy-proven HS. However, only 5 HS+ and 5 HS− CSF 

samples were included on the ELISA plates for comparison to the serum results, so the trend 

did not reach statistical significance.

Results of a retrospective analysis of clinically-relevant thyroid function in persons in 

Cohort1 and Cohort 2 are shown in Table 7. One person (HS+ case in Cohort 2) had missing 

data. Two subjects had remote history of thyroid disease, no longer treated. Otherwise, chi-

square analyses did not indicate any differences between HS+ and HS− subjects in either 
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cohort. Those with reported thyroid disease tended to have thyroid hypofunction in this 

sample since almost all were taking L-thyroxine. Although not different between persons 

with and without HS pathology in this relatively small sample, it is notable that overall one-

third (17/51) of individuals in this series had clinically relevant thyroid disease.

We also investigated retrospectively the pathology on a single case in detail (Fig. 7). This 

individual was selected because ELISA results indicated high total T3 level in CSF although 

HS was not diagnosed at autopsy (see green arrows, Fig. 5b and Fig. 6b). The research 

subject was a woman who died at age 95 and who had a final MMSE score of 27, almost 17 

months prior to death. At her last clinic visit she was taking L-thyroxine for clinical 

hypothyroidism. Autopsy found minimal AD-type pathology and the brain was negative for 

phospho-TDP-43 pathology in the left hippocampus and left frontal lobe (Brodmann Area 

9). However, there was an area – apparently a micro-infarct – in the right hippocampus with 

cell loss and gliosis (Fig. 7b). We retrospectively immunostained the right hippocampus for 

phospho-TDP-43 (1D3 clone) and found stained structures compatible with incipient 

TDP-43 pathology (Fig. 7c). It is unknown how this pathology is mechanistically related to 

HS/CARTS but this case helps to demonstrate the complex nature of brain pathologies in 

advanced age.

In summary, T3 levels were increased in the CSF of pathologically confirmed HS+ cases 

relative to persons without HS pathology in samples from two separate groups. These 

experimental results seem specific since differences were not detected for T4 levels, nor in 

serum, nor in cases stratified by AD pathology. The total T3 and T4 assay results appear 

robust given the technical parameters that were evaluated.

Discussion

Analyses of genetic risk alleles on chromosome 12p12 led to studies that implicated TH 

perturbation in CARTS. Although we only performed direct experimental tests on biofluids 

from 52 human subjects (17 with HS pathology), our study also incorporated analyses of 

data in the public domain referent to thousands of other individuals. Thus, finding evidence 

of a novel pathogenetic mechanism in a deeply complex milieu was enabled by the efforts of 

innumerable research volunteers and fellow researchers.

We found that two SNPs that are within ~500kbp of each other on human chromosome 

12p12 (rs73069071 and rs704180) were both associated with brain atrophy, brain pathology, 

and expression of ABCC9. Further, gene variants in this region, which were associated with 

altered gene expression for both ABCC9 and SLCO1C1, could also be correlated with a 

larger group of TH responsive astrocyte-expressed genes. This effect was at least somewhat 

specific since astrocyte-expressed genes that were not T3-responsive did not correlate with 

ABCC9, SLCO1C1, or the SNPs. We hypothesize that TH plays a role in CARTS 

pathogenesis, and consistent with that, we found that total T3 levels were increased in CSF 

of HS cases relative to controls. This study may help begin to explain and reconcile 

phenomena previously thought unrelated – chromosome 12p relationship to dementia, 

genomics of CARTS, a role for astrocytes in hippocampal TDP-43 pathology, and TH 

dysregulation in dementia.
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Chromosome markers in and near human chromosome 12p12 have been implicated 

repeatedly in dementia risk. The marker D12S1057, located ~2.5 Mbp in the centromeric 

direction from ABCC9, was linked to presumed AD in multiple studies [52, 75, 79, 85]. 

Interestingly, the association was in some cohorts strongest among APOE ε4- individuals 

and was not apparent in a relatively younger cohort [99]. There are also specific SNPs in the 

chromosome 12p12 region that have been associated with neurodegenerative phenotypes 

(Fig. 1). For example, Furney et al [27] reported that rs10743430 (~50kb upstream from 

ABCC9) is associated with MRI-detected “entorhinal thinning”.

Within the region between ABCC9 and SLCO1C1 on human DNA are genes that are 

relatively highly expressed in glia and/or brain endothelial cells. The arrangement of these 

genes on the DNA is conserved across many species whose common ancestors lived >400 

million years ago. For example, in the Coelecanth fish Latimeria chalumnae, as in humans, 

between ABCC9 and SLCO1C1 genes are KCNJ8, GOLT1B, LDHB, SLCO1A2, and 

PYROXD1. The retained order and proximity of these genes during evolution raises the 

possibility of adaptive brain function(s), related to orchestrated gene regulation in that 

region. Since SLCO1C1 is the primary transporter of TH into astrocytes [9, 95], it is a 

credible hypothesis that modulating SLCO1C1 expression is one of the ways that brain TH 

is regulated.

TH has strong biologic impact on the central nervous system. Lack of TH from birth causes 

a maldevelopment syndrome (“cretinism”), with severe mental retardation and extensive 

white matter pathology [81]. This syndrome has become rare in developed countries with 

neonatal screening and salt iodination. In the adult mammalian brain, TH plays important 

roles in metabolic regulation and astrocyte biology [21, 56]. TH dysregulation has been 

implicated in dementia previously -- both hyperthyroid and hypothyroid states have been 

linked to dementia [20, 39, 50, 54, 90]. TH has previously been evaluated in CSF [38, 82, 

87, 88], with varying results, but was never previously tested in relation to CARTS-type 

pathology. Ultimately, although TH is a biologically powerful molecule, and dementia is a 

common clinical syndrome, there currently is poor understanding of how TH perturbations 

contribute to dementia.

Whereas much remains to be learned about the complex biology of TH in the brain, it has 

been established that astrocytes play important roles in brain TH function. Astrocytes help 

import T4 from blood, process the hormone (convert T4 into T3), and deliver T3 to neurons 

[8, 9, 37, 42, 55]. T3 has strong impact on the astrocytes themselves, apparently driving a 

more developmentally ‘mature’ phenotype via transcriptional regulation [28, 51, 93].

A topical question is: do astrocytes participate in the pathogenetic cascade in CARTS? 

TDP-43 pathology is a key component of the pathologic phenotype [3, 66]. Although 

TDP-43 pathology in CARTS is conspicuous within neurons and neurites [2, 34, 65], 

astrocytes may play an active role in the pathogenesis. In Alexander disease, a disorder 

caused by toxic upregulation of glial fibrillary acidic protein (GFAP), hippocampal TDP-43 

pathology is frequently comorbid with the stereotypical astrocytic pathology and 

leukodystrophy [96]. Lin et al [48] described that TDP-43 pathology can be present in 

astrocyte foot-processes in the hippocampus. Abundant GFAP protein was also found in a 
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urea-insoluble protein fraction isolated from HS+ subiculum—the same fraction that also 

contained pathologic TDP-43 protein [65].

The hypothesis that astrocytes play a pathogenetic role in CARTS is supported by the 

present study. A novel regulatory mechanism may involve an astrocytic “metabolic sensor”, 

ABCC9, and a metabolic transporter, SLCO1C1 (Fig. 7). The ABCC9 gene product detects 

low ATP levels, opening a K+ (“KATP”) channel which leads to altered intracellular Ca++ 

levels [63]. ABCC9 helps regulate vascular function [26, 89], and mutations in ABCC9 have 

been shown to cause “tortuous” cerebral blood vessels in a human neuroimaging series [46]. 

Both ABCC9 and SLCO1C1 have been cloned in separate studies from rat brain 

microvasculature [12, 41], and small blood vessel pathology in humans has been implicated 

in CARTS [33, 68, 69]. A dysregulated pathway related to metabolic signaling in small 

blood vessels could mediate between ischemic stress in the aged brain and downstream 

effects such as TDP-43 pathology.

Although the current study provides evidence for a novel pathogenetic mechanism in the 

human brain, there are also limitations and potential pitfalls. Biologic complexity must be 

factored into interpretation of our results, given how much is unknown currently about the 

aged brain, the relevant biochemical pathways, and the comorbid pathologies. The gathering 

of data and analyses from many different sources increased the possibility of false-positive 

discovery due to over-testing. We attempted to minimize this source of bias by focal 

hypothesis-testing as much as possible. A benefit of our approach is that analyses can be 

replicated by others since the data are in the public domain. Yet there is potential for our 

analytic results to be “true, true, and unrelated”. For example, the genomic risk factors may 

not be directly or indirectly related, in a biologic sense, to the CSF T3 perturbations seen in 

persons with HS pathology. Also, the T3 assay results may be explained by perturbations in 

TH carrier molecules (e.g., transthyretin). Despite these uncertainties, detected T3 levels in 

CSF represent a potential clinical test for CARTS, which is a common disease that currently 

lacks a valid biomarker. We did not attempt to assess TH status in clinical (lumbar puncture) 

CSF samples, nor from other brain diseases such as FTLD, or the important subset of brains 

that have minimal or no HS pathology but TDP-43 pathology is present [34, 60]. Finally, 

Roostaei et al [80] noted that rs73069071 is located within the IAPP gene which encodes the 

polypeptide amylin. Unlike the overlapping gene SLCO1A2, IAPP/amylin is not known to 

be expressed in the human brain, but amylin has been associated with dementia through a 

mechanism linked to diabetes [36]. We conclude that there are many intriguing research 

questions to be addressed in future work.
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Fig. 1. 
Depiction of the region of human DNA that includes ABCC9, SLCO1C1, and single 

nucleotide polymorphisms (SNPs) that have been associated with non-Alzheimer’s 

neurodegenerative disease phenotypes according to research from multiple different research 

centers. Note that SNPs rs704180 and rs73069071 are approximately 500kb from each other 

on chromosome 12p12. Another SNP evaluated in the current study, rs4148651, is the SNP 

most strongly associated with ABCC9 expression in the Braineac website (Table 1); the 

location of rs4148651 is indicated with the orange arrowhead. Specific citations (Refs) are 

Zou et al [103], Roostaei et al [80], Nelson et al [61, 67], Furney et al [72], and Nho et al 

[73]. Source for this graphic is https://genome.ucsc.edu/
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Fig. 2. 
Regional brain atrophy that is associated with variation in chromosome 12p12 SNPs in the 

ADNI cohort (n=1239) as detected by brain MRIs from living subjects. This study evaluated 

differences in brain volumes comparing those with and without the risk alleles, using 

methodology as previously described [73]. The regions of the brain where atrophy was 

associated with the risk allele are shown in shades of blue which indicate p value. Both 

rs73069071 (a) and rs704180 (b) SNPs were associated with widespread brain atrophy as 

quantified using MRI. The minor allele frequency for rs73069071 was 11.8% in this cohort, 
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and these cases were excluded from the analyses of rs704180 (b). Panel (c) shows that 

among persons with the rs704180 A_A genotype, comparing between those with and 

without the rs73069071 risk genotype (any C allele) shows that individuals with the 

rs73069071 risk genotype have more atrophy in the medial temporal lobes (red arrowheads).
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Fig. 3. 
“Braineac” website (Table 1) data enabled testing of expression levels of exons across the 

ABCC9 transcript. The microarray enabled quantification of the expression of the individual 

exons using 48 different probes referent to ABCC9 (Affymetrix Exon 1.0 ST microarray 

Probe ID#’s 3446921–3447003). The probes consistently showed expression changes that 

were associated with rs704180 (red circles) and rs73069071 (green circles) SNP status. The 

genome assembly used for this figure is Build 34 which relates directly to the probe set 

reference values.
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Fig. 4. 
Both ABCC9 and SLCO1C1 are relatively highly expressed in mature astrocytes in the 

human brain. These results indicate human brain cell type specificity of ABCC9 (a) and 

SLCO1C1 (b) expression in this publicly available website. The study design [17] involved 

laser capture microdissection of cells from “temporal lobe cortex” of humans, followed by 

RNA-seq, from Ben Barres’s laboratory.

Source: http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?

geneNameIn=abcc9
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Fig. 5. 
In two non-overlapping convenience samples (n=26 persons in each), T3 levels were 

increased in CSF obtained from cases with hippocampal sclerosis (HS) pathology (a, b show 

results of Cohort 1 and Cohort 2) relative to controls. Statistics were run with Student’s t-

test, 2-tailed, assuming unequal variance. Bars depict standard error of the mean. Each of the 

comparison groups were matched for age, overall cognitive status (final MMSE score before 

death), the degree of AD-type pathology, length of time the CSF sample was stored at 

−80°C, and the post-mortem interval. The number of the samples used in each assay cohort 

was determined by the number of samples that could be applied in triplicate in a single 

ELISA assay while also including a standard curve. The data point referent to Fig. 7 is 

shown with a green arrow.
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Fig. 6. 
T3 levels were not increased in CSF with increasing severity of Alzheimer’s disease (AD) 

pathology (a, b show results of Cohorts 1 and Cohort 2). In comparison with Cohort 1, 

Cohort 2 cases had on average less severe AD pathology but the HS and non-HS cases were 

still matched for various parameters including severity of AD pathology as operationalized 

with Braak NFT stages. Bars depict standard error of the mean. Data points related to 

individuals with autopsy-confirmed HS pathology are shown in red. The data point referent 

to Fig. 7 is shown with a green arrow.
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Fig. 7. 
The CSF sample that had the highest level of detected total T3 in Cohort 2 (green arrows in 

Figs. 5 and 6) was from the brain of a woman with clinical hypothyroidism (taking L-

thyroxine at last clinic visit), who died at age 95 with final MMSE score of 27, and who 

lacked frank hippocampal sclerosis pathology. Alzheimer’s disease-type pathology was 

minimal: Braak NFT stage II, Thal Aβ stage 1, with no neuritic amyloid plaques. Phospho-

TDP-43 pathology was not identified in left hippocampus or frontal lobe. However, there 

was an area in the right hippocampus with cell loss and astrocytosis presumed to represent a 
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microinfarct (arrow in panel a, boxed area shown at higher magnification in panel b). In this 

section, small foci of phospho-TDP-43 (P-TDP-43) immunoreactive structures were seen in 

CA1 (c). Hippocampal CA1 and dentate granule (dg) regions are indicated for orientation. 

Scale bars = 2mm (a) 300 µm (b), and 50 µm (c).
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Fig. 8. 
Cartoon depicts how ABCC9 and SLCO1C1 may participate in regulation of thyroid 

hormones (T3 and T4) in astrocytes. Highlighted areas of interest (black multi-point stars) 

that require further study include: 1. ABCC9 gene product (SUR2) may link metabolic 

needs and altered transcriptional signaling; 2. T4 transport into astrocytes (mediated by 

SLCO1C1 protein) may be affected by advanced old age, which often is attended by 

disrupted vasculature, increased oxidation, and various stressors; 3. T3-mediated gene 

expression regulation in astrocytes may change under conditions of stress or ischemia; 4. 
How T3 transport is regulated by SLCO1C1 and other transporters that are not astrocytic; 5. 
T3 transport from astrocytes into neurons and CSF, which may be altered by various 

stressors and/or aging itself. Increased T3 levels in CARTS cases’ CSF may have 

pathogenetic impact on neurons and/or synapses.

Nelson et al. Page 28

Acta Neuropathol. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nelson et al. Page 29

Table 1

Data sources for the current study

Data Source
(alphabetic order)

Samples Primary
measurement/

source

Analytic
platform(s)

Website and source information, Ref#

Allen Brain Institute 90 adults
(no Braak

VI)

Parietal cortex
and temporal

cortex

RNA Seq http://aging.brain-map.org/rnaseq/

Alzheimer’s Disease
Genetics 

Consortium
(ADGC) and 

National
Alzheimer’s

Coordinating Center
(NACC)

2,113
autopsied
persons

Detailed
neuropathology

data

Illumina
Omni SNP
arrays, see
methods

https://www.alz.washington.edu/;
http://www.adgenetics.org/

Alzheimer’s Disease
Neuroimaging

Initiative (ADNI)

1,239 live
persons

Brain surface
measured with

MRI

Illumina
Omni SNP
arrays, see
methods

http://www.adni-info.org/

Barres Lab human
cerebral cortex

466 cells
from 8
human

adults, 4
embryos

Temporal
neocortex

RNA Seq
after laser

capture
micro-

dissection

http://web.stanford.edu/group/barres_lab/cgi-bin/geneSearch.py?geneNameIn=abcc9;
Ref [17]

Barres Lab with cell
type enrichment

Mice brain
cells

Cell types
enriched from
cerebrocortical

brain areas

RNA Seq
after cell

enrichment

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html;
Ref [102]

BrainCloud 148 adults
(>20y.o.
cutoff)

Frontal Cortex Affymetrix
Exon 1.0 ST

Array,
Illumina

Omni 1M
Immunochip

http://braincloud.jhmi.edu/; Ref [13];
dbGaP accession #:
phs000417.v2.p1

Braineac 134 adults 10 brain areas
(see Methods)

Affymetrix
GeneChip,

Exon 1.0 ST
Array

http://caprica.genetics.kcl.ac.uk/BRAINEAC/;
Refs [76, 92]

Gil-Ibanez et al, T3
impact on astrocyte

gene expression

T3-treated primary mice
cerebrocortical cells

RNA Seq Ref [28]

LDlink NCI/NIH site for search of linkage
disequilibrium between SNPs

http://analysistools.nci.nih.gov/LDlink/;
Ref [49]

North American
Brain Expression

Consortium
(NABEC)

166 adults
(>20y.o.
cuttoff)

Frontal Cortex Illumina
HT12v3 array

Refs [30, 31];
dbGaP accession #:
phs000249.v2.p1

U. Kentucky
AD Center autopsy

series

52
autopsied
persons

CSF and sera T3 and T4
assays

(ELISA)

See methods
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Table 2

NACC/ADGC data: Percentage of individuals who died ≥80years old, lacking frontotemporal lobar 

degeneration, with hippocampal sclerosis (HS) pathology, stratified by SNPs (n=2,113 autopsied individuals 

including 241 HS cases)

rs73069071
genotype

Number of HS
cases (%)

p-value

rs704180 risk
genotype (AA)

CC or CT
TT

23 (23.0)
63 (13.9)

0.023*

rs704180 non-risk
genotype (AG or GG)

CC or CT
TT

36 (9.6)
119 (10.0)

0.82

*
-With continuity correction, p=0.034
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Table 3

Testing the association between SNP status and gene expression, Braineac (n=1,231 gene expression 

microarrays, 134 SNP arrays, see Table 1): p-values

SLCO1A2 SNP ABCC9 SNPs

Gene rs73069071 rs704180 rs4148651

ABCC9 0.0067 0.011 5.3 × 10−7

SLCO1C1 0.0060 0.25 0.0031
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Table 4

Astrocyte-expressed genes in public access data sources: enrichment in cell culture after thyroid hormone (T3) 

treatment, association between gene expression and SNP status, and association with the gene expression of 

ABCC9 and SLCO1C1 in four different large human brain gene expression data sets

*
- From Gil-Ibanez et al [28]. Shown are the 15 astrocyte-expressed genes that were most upregulated following treatment of mouse cerebrocortical 

cells with triiodothyronine (T3) in culture, FPKM >10

Acta Neuropathol. Author manuscript; available in PMC 2017 December 01.
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**
- See Table 1 for more information; each data set comprises a separate cohort with >100 human brain samples with gene expression profiling

***
- For comparison, the top 10 expressed astrocyte genes as determined to be expressed in mouse astrocytes (in comparison to Neuron, OPC, 

Newly Formed Oligodendrocyte, Myelinating Oligodendrocyte, Microglia) in http://web.stanford.edu/group/barres_lab/brain_rnaseq.htm
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Table 7

Parameters related to self-reported thyroid disease and thyroid related medications in Cohort 1 and Cohort 2, 

stratified by hippocampal sclerosis (HS) pathology

n

Self-reported
thyroid disease*

Y/N

Hypothyroid
medicine*

Y/N

Hyperthyroid
medicine*

Y/N

Cohort 1

HS+ 8 3/5 3/5 0/8

HS− 18 5/13 5/13 0/18

Cohort 2

HS+ 11 4/7 3/8 0/11

HS− 14 5/9 7/7 0/14

*
-See Methods for explanation
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