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Abstract

Problems with attention and short-term learning and memory are commonly reported after mild 

traumatic brain injury (mTBI). Due to the known relationships between α-synuclein (SNCA), 

dopaminergic transmission, and neurologic deficits, we hypothesized that SNCA polymorphisms 

might be associated with cognitive outcome after mTBI. A cohort of 91 mTBI patients one month 

after injury and 86 healthy controls completed a series of cognitive tests assessing baseline 

intellectual function, attentional function, and memory, and was genotyped at 13 common single 

nucleotide polymorphisms (SNPs) in the SNCA gene. Significant differences in two memory 

measures (p = 0.001 and 0.002), but not baseline intellectual function or attentional function tasks, 

were found between the mTBI group and controls. A highly significant protective association 

between memory performance and SNCA promoter SNP rs1372525 was observed in the mTBI 

patients (p = 0.006 and 0.029 for the long and short delay conditions of the California Verbal 

Learning Tests, respectively), where the presence of at least one copy of the A (minor) allele was 

protective after mTBI. These results may help elucidate the pathophysiology of cognitive 

alterations after mTBI, and thus warrant further investigation.
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Introduction

Mild traumatic brain injury (mTBI) is a major public health problem affecting over 1.27 

million Americans every year [1]. While many mTBI patients recover without significant 

long-term consequences, some individuals continue to have persistent symptoms, including 

problems with memory, attention, processing speed, and executive function [2]. Patients 

with seemingly similar degrees of injury often display differing severity of deficits, leading 

our group and others to postulate that polymorphisms in genes modulating the neural 

response to trauma may influence clinical outcome after mTBI [3, 4].

Alterations in dopaminergic and other catecholaminergic signaling systems have been 

hypothesized to play a role in persistent cognitive complaints and deficits after TBI: striatal 

dopamine levels have been shown to decrease post-injury, and the clinical treatment of TBI 

involves increasing dopaminergic neurotransmission [5, 6]. Studies in both mice and humans 

have demonstrated abnormal dopamine transport and D2 receptor binding in response to 

varying severities of TBI [7, 8]. Furthermore, it has been recently shown that mTBI patients 

performing working memory tasks have an altered response to the dopamine D2 receptor 

agonist bromocriptine as compared to healthy controls [9].

Because of this putative role of dopaminergic pathways in mTBI, genes that influence 

dopaminergic function are attractive candidates for study. One candidate of interest is the 

gene for α-synuclein (SNCA), a member of the synuclein family of proteins that has been 

implicated in the pathogenesis of multiple neurologic diseases including Parkinson’s disease 

(PD), multiple system atrophy, and Lewy body dementia [10]. In early functional studies by 

Abeliovich et al., α-synuclein knockout-mice showed a reduction in striatal dopamine and 

attenuated dopamine-dependent response to amphetamine without neuronal degeneration, 

suggesting a regulatory role of α-synuclein in dopaminergic neurotransmission [11]. α-

Synuclein has since been further implicated as a regulator of dopamine biosynthesis and 

availability through interactions with tyrosine hydroxylase [12]; as a determinant of the 

density of dopaminergic neurons in the substantia nigra [13]; and as a mediator of long-

lasting increase in neurotransmitter release [14]. Polymorphisms in the SNCA gene are well-

documented genetic risk factors for PD [15], a disease pathologically characterized by loss 

of midbrain dopaminergic neurons, and whose clinical features include not only 

extrapyramidal motor symptoms, but often also impairment of memory and executive 

functions as is commonly seen in traumatic brain injury. Outside of PD, SNCA 
polymorphism associations have not been well elucidated.

Given the relationships between dopamine, mTBI, and SNCA, we hypothesized that 

polymorphisms in SNCA might influence cognitive performance in mTBI patients.
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Methods

Participants

A cohort of 91 consecutive patients with mTBI was recruited from a Level 1 trauma center 

emergency department using American Congress of Rehabilitation Medicine criteria for 

mild TBI [16]. Specifically, mTBI was defined as an initial Glasgow Coma Scale (GCS) 

score of 13–15 when available and/or duration of loss of consciousness not exceeding 30 

minutes. mTBI participants were studied approximately one month after injury. A total of 86 

normal controls were evaluated. One cohort of healthy control subjects (n=38) was recruited 

specifically for this study through advertisements. Demographic, cognitive, and genotype 

data from additional healthy control subjects (n=48) studied by our group as part of 

previously published breast cancer and aging studies [17, 18] were obtained. Exclusion 

criteria of a history of other neurological disorders, substantial systemic medical illness, or 

current DSM-IV axis I psychiatric diagnosis disorder with the exception of substance abuse 

based on the Structured Clinical Interview for DSM-IV [19] resulted in the elimination of 

four mTBI subjects. The study protocol and informed consent were approved by the 

Dartmouth College Committee for the Protection of Human Subjects. Written informed 

consent was obtained from all participating subjects. Over 95% of the TBI and control 

groups were Caucasians of European descent.

Cognitive measures

All cognitive tests were determined prior to analyzing the data. The Wide-Range 

Achievement Test (WRAT) reading subtest [20] was used to estimate baseline level of 

general intellectual function. Simple Reaction Time, Vigilance, and Distractibility conditions 

of the Continuous Performance Test (CPT) were used as measures of attentional function 

[21]. The Short Delay (SD) and Long Delay (LD) conditions of the California Verbal 

Learning Test (CVLT) were selected as the primary outcome measures of memory [22].

Genotyping and characterizing the SNCA locus

DNA was purified from peripheral blood using QIAGEN’s blood mini kit (QIAGEN, 

Alameda, CA). Genotyping was done using a custom made 3600 SNP microarray gene chip 

(Affymetrix, Inc., Santa Clara, CA) as previously described [4]. This study is based on the 

13 SNCA polymorphisms included in that array.

Haploview [23] and the NCBI Homo sapiens Annotation Release 105 were used to 

characterize and study SNCA polymorphisms. P-values for Hardy-Weinberg equilibrium 

(HWE) and minor allele frequency were obtained based on both chi-squared and exact test 

analysis. In addition, linkage disequilibrium (r2) was analyzed for all combinations of SNPs.

Statistical analyses

Between-group differences in demographic characteristics were examined by t-tests or chi-

square tests for continuous or categorical variables, respectively. Each of the allele variables 

was summarized as a factor variable with two levels assuming a dominant genetic model (at 

least one copy of the minor allele vs no copies of the minor allele). Genetic group 

differences for cognitive measures were analyzed by analysis of covariance (ANCOVA) with 
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diagnosis, the allele variable, and the interaction between allele and diagnosis included in 

the model, covarying for age and gender; education was not included in the final model 

because of a significant correlation with both the independent variable and other covariates. 

Significance tests were examined for the main effects of diagnosis and allele status, and for 

the interaction between allele and diagnosis. Significant p-values for polymorphisms and 

cognitive measures were adjusted for multiple comparisons using the Benjamini and 

Hochberg false discovery rate (FDR) method, using an FDR of 0.10 [24]. All analysis was 

performed and repeated using Excel Data Analysis Toolkit, SPSS, and Stata.

Polymorphism comparison between mTBI and PD

PDGene contains a comprehensive, unbiased and regularly updated synopsis of genetic 

association studies performed in PD [15]. Meta-analyses were obtained for all characterized 

polymorphisms in the SNCA gene, and odds ratios and confidence intervals were averaged 

between all studies available. This data was downloaded on 1/10/2015 and compared to the 

results from our mTBI study.

Results

Demographics

The population characteristics of the healthy control and mTBI groups are summarized in 

Table 1. Due to the nature of the control cohorts (38 subjects recruited specifically for this 

study, 27 subjects from an aging study, and 21 subjects from a breast cancer study), there 

were significant differences in age, education, and sex between control and mTBI groups: all 

additional statistical analysis was therefore done co-varying for these three factors. However, 

the mTBI patients and the control subjects recruited specifically for this study and the mTBI 

patients were balanced for age, education and sex, and there were no substantive differences 

in the results of this study when only those control subjects were considered (p>0.05). The 

mTBI group had a mean (SD) GCS score of 14.8 (0.550), a post-traumatic amnesia duration 

of 5.36 (7.18) hours, and loss of consciousness of 5.13 (7.58) minutes, a cognitive profile 

consistent with mTBI. The mean injury-to-testing time was 39.5 (15.8) days.

Cognitive measures

Cognitive results are included in Table 1. There was no significant difference in baseline 

intellectual function as estimated by the WRAT reading score, or attentional function as 

measured by the Continuous Performance Tasks (CPT): Simple Reaction Time, Vigilance, 

and Distractibility. Significant performance differences were found between the two groups 

on the California Verbal Learning Test (CVLT) Short Delay and Long Delay free recall 

conditions (p=0.001 and p=0.002, respectively). Therefore, all further analyses were 

performed using both CVLT (SD and LD) conditions. These findings are consistent with 

previous studies, which confirm no difference in the WRAT reading scores of mTBI patients 

and controls [3, 25] but a significant difference in both CVLT-SD and LD[3, 4, 26]. 

Additionally, no significant differences were found between memory performance (CVLT-

LD and CVLT-SD) of the volunteer, breast cancer study, and aging study control groups 

(p>0.05).
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Genetic analysis

Based on the chi-square and exact test analyses, the analyzed SNPs were all in Hardy-

Weinberg equilibrium (p > 0.356), with minor allele frequencies greater than 0.17. The 

default setting in Haploview showed strong linkage disequilibrium between some of the 

SNPs (data not shown).

Effects of genotype on memory performance

The effects of genotype on memory performance on the CVLT SD and LD trials are 

summarized in Table 2. Using an autosomal dominant inheritance model for analysis, the 

most significant association was of the promoter polymorphism rs1372525 in mTBI patients 

with the CVLT SD and LD trials (p = 0.029 and 0.006, respectively). The G/G genotype was 

associated with poorer memory performance phenotype in mTBI patients (n=30), while 

having at least one copy of the A allele was shown to exert a protective effect (n=61) (Figure 

1a). In contrast, no similar relationship was found when comparing attentional function 

scores (e.g. CPT: Simple Reaction Time and Vigilance) with genotype (Figure 1b), 

suggesting a memory-specific effect. A similar pattern was observed in subjects with the 

polymorphism rs356219 (SD and LD), rs1023777 (SD and LD), and rs2301134 (SD only) 

(Table 2).

Because of the high degree of linkage disequilibrium between the polymorphisms studied, 

the analyses were repeated covarying for the most significant SNP, rs1372525. The 

previously noted significant associations for rs356219 and rs102377 and CVLT LD were no 

longer significant in the new model (p = 0.195 and 0.882, respectively), and their association 

with CVLT is presumably due to linkage disequilibrium with rs1372525. Similar results 

were obtained for the CVLT SD.

In order to be sure that the differences between the G/G subjects and A allele subjects were 

not due to chance differences in injury severity, the analyses were repeated across 

polymorphism groups for duration of loss of consciousness (LOC), duration of post-

traumatic amnesia (PTA), and GCS score. For rs1372525, no significant differences were 

found between the two groups for LOC (p = 0.710), PTA (p = 0.624), and GCS (p = 0.733), 

thus ruling out the impact of injury severity on our findings.

Comparison of SNPs associated with PD and those associated with memory difficulties 
after mTBI

Because of the importance of SNCA in PD, we evaluated whether or not those 

polymorphisms found to have protective effects on memory after mTBI are also implicated 

in PD pathophysiology. Each of the polymorphisms examined in this study has been 

included in four or more PD genetic association studies, and meta-analysis of those studies 

is available in PDgene. Combining PDGene data downloaded on 1/10/2015 with our own 

polymorphism data, we found that there was no significant relationship between the 

polymorphisms most significantly associated with improved cognitive performance after 

mTBI and the polymorphisms associated with PD (p>0.05; Table 2). Specifically, 

rs1372525, the most significant polymorphism in the mTBI study, has not been associated 

with the risk of PD (OR ~1; Table 2).
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Discussion

The specific pathophysiology responsible for problems with cognitive outcomes after mTBI 

is not well understood, although substantial evidence suggests a role for altered 

dopaminergic neurotransmission. SNCA is an attractive candidate for study in this context 

because of its role in PD, a disease caused by death of dopaminergic neurons. We 

hypothesized that polymorphisms in SNCA might also be associated with measures of 

cognitive outcome following mTBI.

Utilizing a cohort of 95 mTBI patients and 86 normal controls, we found that there are 

SNCA polymorphisms associated with cognitive outcomes related to memory function after 

mTBI. Specifically, we observed a strong association between the promoter polymorphism 

rs1372525 and a protective memory phenotype after mTBI, such that patients having at least 

one copy of the A allele performed significantly better for free memory recall as measured 

by the CVLT-SD and LD trials. All other polymorphism associations could be accounted for 

by linkage disequilibrium with rs1372525. We note with interest that this polymorphism is 

not associated with the risk of PD, and polymorphisms which are associated with risk of PD 

were not associated with a better or worse cognitive outcome in this mTBI cohort. This lack 

of association is supported by a recent study by Guella et al., who show that SNCA 
polymorphisms associated with cognitive defects in PD spectrum disorders are unrelated to 

those associated with risk for PD [27].

There are multiple potential mechanisms for the protective effect of rs1372525 and other 

SNCA promoter polymorphisms on memory. The first mechanism is through altered 

dopaminergic neurotransmission mediated by polymorphism-mediated changes in gene 

expression. It is well described that learning and memory are strongly dependent on 

dopamine neurotransmitter activity, particularly in the prefrontal cortex [28], hippocampus 

[29], and striatum [30]. Furthermore, SNCA promoter polymorphisms have been previously 

linked to altered α-synuclein expression in humans [31]. It is therefore possible that the 

protective mechanism of rs1372525 and other SNCA promoter polymorphisms involves 

regulation of α-synuclein expression, which could alter dopamine release and downstream 

activity to levels optimal for memory functions. An alternative possible mechanism by 

which specific SNCA polymorphisms may exert a protective effect on memory after mTBI 

involves decreasing α-synuclein aggregation. It has been shown that brain injury impairs 

axonal transport and induces inflammatory cascades, leading to the accumulation of α-

synuclein and subsequent impairment of neurological and behavioral functions [32]. 

Interestingly, it has been shown that ‘risk’ polymorphisms in the 3’ region of SNCA leads to 

alternative splicing with increased relative levels of splice variant SNCA112-mRNA, 

resulting in enhanced α-synuclein aggregation [33]. Therefore, rs1372525 and other SNCA 

polymorphisms could exert neuroprotective effects post-mTBI by decreasing α-synuclein 

accumulation through alternative splicing or other means.

There are a few limitations to this study. First, cognitive change after mTBI is a complex, 

multifactorial process. Our significant results did not account for other factors that may play 

a role in cognitive recovery, such as post-injury treatment and psychosocial factors. Second, 

the subjects in this study are mostly of northern European Caucasian descent, and the study 
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needs to be repeated with other populations. Third, the control and mTBI populations were 

significantly different in their age, gender, and education levels. Although their estimated 

baseline intellectual function did not demonstrate a significant difference and these variables 

were covaried for in analyses, this study should ideally be repeated with mTBI cohorts with 

a larger female population. Finally, the sample size used in this study was limited and should 

be repeated in other mTBI cohorts.

Despite these limitations, our study provides novel evidence for a role of SNCA in memory 

performance post-mTBI. To our knowledge, this is the first report describing a direct link 

between α-synuclein and cognitive outcome after mTBI. Our significant results warrant 

future analysis, such as study in more severe cases of traumatic brain injury, interaction with 

post-injury treatment and psychosocial factors, and generalizability to other population 

cohorts.
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Highlights

• Patients with mTBI have significantly decreased memory performance 

one month after injury

• Protective association between memory performance and SNCA 

promoter polymorphism rs1372525

• Less significant SNCA polymorphisms attributed to linkage 

disequilibrium with rs1372525

• Protective effect of rs1372525 not related to risk for Parkinson’s 

Disease
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Figure 1. Effect of rs1372525 allele status on cognitive outcomes
A. Memory measures. Effect of rs1372525 genotype on the number of words recalled (Short 

and Long Delay free recall measures of the California Verbal Learning Test) in the mild 

traumatic brain injury (mTBI) group and the control group. Higher values indicate better 

memory performance. Statistically significant differences were found in the mTBI group 

between the G/G homozygotes (n = 61) and the groups with an A allele (n = 30). Error bars 

represent standard error. *p=0.029 **p=0.006

B. Attentional function measures. Effect of rs1372525 genotype as measured by CPT Simple 

Reaction Time and Vigilance Accuracy in the mild traumatic brain injury (mTBI) group and 

the control group. No statistically significant changes were detected (p>0.05). Error bars 

represent standard error.

Shee et al. Page 11

Neurosci Lett. Author manuscript; available in PMC 2017 September 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shee et al. Page 12

Table 1
Study population demographics and cognitive performance measures

Demographic characteristics (Age, Gender, Education, Mother’s education, and Father’s education) of the 

mTBI patients and healthy controls. Cognitive performance measures (WRAT, Simple Reaction Time, 

Vigilance, and Distractibility conditions of the CPT, and Short and Long Delay Free Recall conditions of the 

CVLT) of the mTBI patients and healthy controls.

n 91 86

Age, years 33.7 (13.7) 47.9 (10.2) <0.001

Male, gender 56 (61.5%) 27 (31.8%) <0.001

Education years 14.3 (2.63) 15.9 (2.38) <0.001

Mother's education,
years

13.7 (2.55) 13.4 (2.94) 0.367

Father's education,
years

14.5 (3.52) 13.8 (3.64) 0.254

WRAT Reading
Standard Score

106.8 (9.84) 105.9 (9.04)* 0.595

Simple Reaction Time
Number Correct (CPT)

28.9 (2.23) 28.9 (1.20)** 0.931

Vigilance Number
Correct (CPT)

28.9 (2.32) 28.4 (2.94)** 0.308

Distractability
Number Correct (CPT)

26.0 (6.30) 27.4 (2.94)** 0.193

Short Delay Free
Recall (CVLT)

10.9 (3.30) 12.7 (2.21) 0.001

Long Delay Free
Recall (CVLT)

11.4 (3.14) 13.2 (2.33) 0.002

*
n=58

**
n=38
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