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Abstract Introduction: We analyzed the effects of the top 20 Alzheimer disease (AD) risk genes on gray-
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matter density (GMD) and metabolism.
Methods: We ran stepwise linear regression analysis using posterior cingulate hypometabolism and
medial temporal GMD as outcomes and all risk variants as predictors while controlling for age,
gender, andAPOE ε4 genotype.We explored the results in 3D using Statistical ParametricMapping 8.
Results: Significant predictors of brain GMD were SLC24A4/RIN3 in the pooled and mild cognitive
impairment (MCI); ZCWPW1 in the MCI; and ABCA7, EPHA1, and INPP5D in the AD groups. Sig-
nificant predictors of hypometabolism were EPHA1 in the pooled, and SLC24A4/RIN3, NME8, and
CD2AP in the normal control group.
Discussion: Multiple variants showed associations with GMD and brain metabolism. For most
genes, the effects were limited to specific stages of the cognitive continuum, indicating that the ge-
netic influences on brain metabolism and GMD in AD are complex and stage dependent.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Background

Alzheimer disease (AD) is a chronic neurodegenerative
disease characterized by short-term memory loss in the early
disease stages and progressive cognitive and functional def-
icits as the disease advances. The clinical symptoms result
from the deposition of two toxic proteins, b-amyloid (Ab)
and tau, which give rise to neuritic plaques and neurofibril-
lary tangles, respectively [1]. The clinical appearance of AD
is the direct result of neuronal dysfunction and death, which
is manifested by brain atrophy and hypometabolism.
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Brain imaging is increasingly used to measure AD-
associated changes in vivo. Amyloid positron
emission tomography (PET), a novel Food and Drug Admin-
istration–approved imaging technology, uses selective Ab
tracers to visualize brain amyloidosis and can reliably detect
the presence of neuritic plaques in the symptomatic and pre-
symptomatic stages. Brain atrophy is best evaluated with
longitudinal studies of magnetic resonance imaging (MRI).
The atrophic changes are first noticeable in the medial tem-
poral lobe, eventually spreading through the remainder of
the brain as the disease progresses [2]. Contributing to the
neuronal death, brain hypometabolism, a decrease in the
brain metabolic activity, can be visualized using F18-fluoro-
deoxyglucose (FDG) PETor single photon emission tomog-
raphy. The hallmark pattern in AD is early hypometabolism
of the posterior cingulate, lateral temporal, and parietal lobes
with spread to the frontal lobes as the disease progresses [3].

Seventy to eighty percent of sporadic AD can be attrib-
uted to genetic risk [4,5]. Recent large-scale genome-wide
association studies (GWASs) have discovered more than
20 AD gene variants that confer genetic risk [6–11].
Among these variants is the apolipoprotein E (APOE)
gene, which is the most established genetic risk factor for
AD. Individuals with a single APOE ε4 allele have a three-
fold increase in AD risk, whereas homozygotes have a 12-
fold increase [12]. apoE is a major protein component of
chylomicrons and is highly expressed in both liver and brain,
where it plays a role in lipid metabolism and is thought to be
involved in the breakdown of Ab, both inside and outside of
cells. The apoE4 protein is less effective in clearing Ab,
providing a possible explanation for the increased risk of
amyloid buildup [13]. With the help of imaging studies,
APOE ε4 allele was found to be strongly associated with
brain amyloidosis [14,15], atrophy [16], and hypometabo-
lism [17,18]. These data indicate that valuable
observations related to gene function can be gathered with
imaging phenotypes.

Many of the remaining top 20 AD variants have also been
implicated in brain metabolism and neurodegeneration.
Several SORL1 variants, EPHA1 rs11771145, and CR1
rs6656401 were found to be associated with hippocampal at-
rophy and cerebrovascular or cardiovascular disease [19,20].
Additionally, various research groups have shown that
ABCA7 rs3764650, MS4A6A rs983392, MS4A6A rs610932
and rs11230161, BIN1 rs6733839 and rs744373, CR1
rs1408077, CR1 rs6656401, CR1 rs3818361, PICALM
rs3851179, CLU rs11136000 and rs2279590, CD2AP
rs10948363, and CD33 rs3865444 are all associated with
MRI-measured brain atrophy on MRI [21–27]. BIN1
rs7561528 was found to be significantly associated with
both hippocampal volume and FDG PET brain metabolism
[28]. The studies mentioned have unquestionably contributed
to the field of imaging genetics and AD research as a whole,
but many of these studies have either analyzed the effect of
a single gene variant at a time [19–22,24,26,27] or
investigated the association between a polygenic risk score
with the imaging trait, which does not allow us to interpret
the individual contribution of genetic variants [23]. The
commonly usedunivariate imaginggenetics approach ignores
the fact that in any given human subject, many of these risk
variants are simultaneously present, and the genetic contribu-
tion of each variant should be investigated in the presence of
the rest and not in isolation. In addition, these studies have
investigated the effects in the pooled samples consisting of
asymptomatic individuals, of whom only a portion harbor
AD pathology, as well as symptomatic individuals who are
in different stages of the disease. Such an approach would
miss any stage-specific associations that might occur for
genes that influence the timing and course of development
of disease traits (e.g., early vs. late neurodegeneration or
amyloidosis, early vs. late impairment in a specific cognitive
domain) and explain, at least in part, AD heterogeneity.

Using a multivariable approach across the disease spec-
trum allows for accurate modeling of this complex polygenic
disease that is constantly evolving. Here, we report a
comprehensive analysis of the associations of all well-
validated AD risk variants from recent large-scale GWAS
studies with two markers of neurodegeneration—brain
gray matter density (GMD) and brain glucose metabolism.
Our goal was to establish the relative contribution of the
top 20 AD risk genes to changes in GMD and metabolic
dysfunction. We hypothesized that we would find gene var-
iants that show a profound effect on these two neurodegen-
erative phenotypes and that some variants will show
associations in a stage-specific manner.
2. Methods

2.1. Subjects

We sourced our study data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.
usc.edu). ADNI is an international longitudinal study with
approximately 50 sites across the United States and Canada
that was launched in 2003. ADNI’s goal is to track the pro-
gression of AD using clinical and cognitive tests, MRI, FDG
PET, amyloid PET, cerebrospinal fluid, and blood bio-
markers (http://adni.loni.usc.edu/study-design).

ADNI has undergone three study cycles: ADNI1, ADNI
GO, and ADNI2. Our study population was composed of
participants from all three stages [29]. The MRI and FDG
PETanalyses included all subjects with GWAS and baseline
MRI or FDG PET data that were successfully preprocessed.
A total of 1564 ADNI subject had baseline MRI and GWAS
data. Of those, 65 failed in the MRI preprocessing steps and
were excluded from our structural analyses. Our final MRI
cohort consisted of 441 cognitively normal (NC) subjects,
764 mild cognitive impairment (MCI) subjects, and 294 de-
mentia subjects (total N5 1499). As not all ADNI1 subjects
received FDG PET, our FDG PET cohort was smaller and
consisted of 381 NC, 634 MCI, and 243 dementia subjects
(total N 5 1258). There were 59 subjects with available
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FDG PET data whose MRI scans failed in the preprocessing
steps as described previously. These subjects were included
in our FDG PET analyses.

The clinical characteristics of the ADNI cohort were
described previously [30]. Diagnosis of AD was based on
the National Institute of Neurological and Communicative
Disorders and Stroke and the AD and Related Disorders As-
sociation criteria [31]. AD subjects were required to have
Mini–Mental State Examination (MMSE) [32] scores be-
tween 20 and 26 and a Clinical Dementia Rating (CDR)
scale score of 0.5–1 at baseline [33]. Qualifying MCI sub-
jects had memory complaints but no significant functional
impairment, scored between 24 and 30 on the MMSE, had
a global CDR score of 0.5, a CDR memory score of 0.5 or
greater, and objective memory impairment on Wechsler
Memory Scale–Logical Memory II test [34]. NC subjects
had MMSE scores between 24 and 30, a global CDR of 0,
and did not meet criteria for MCI and AD. Subjects were
excluded if they refused or were unable to undergo MRI;
had other neurological disorders, active depression, or his-
tory of psychiatric diagnosis, alcohol, or substance depen-
dence within the past 2 years; less than 6 years of
education; or were not fluent in English or Spanish. The
full list of inclusion/exclusion criteria may be accessed on
pages 23–29 of the online ADNI protocol (http://www.
adni-info.org/Scientists/ADNIStudyProcedures.html).
Written informed consent was obtained from all partici-
pants.
2.2. Gene variant selection and imputation

ADNI-1 participants were genotyped using the Illumina
Human610-Quad BeadChip array, whereas ADNI-2/GO par-
ticipants were genotyped using the Illumina HumanOmniEx-
press BeadChip (Illumina, Inc., San Diego, CA). Our decision
to include gene variants was based on the AD GWAS studies
that discovered these variants to date [6–11]. Genes
previously associated with the defining AD pathologic
hallmark–amyloid pathology were also included in our
study [35–37] (Supplementary Table 1). The total number
of variants selected was 36.

ABCA7 rs3752246, BIN1 rs6733839, CASS4 rs7274581,
CD2AP rs9349407, CELF1 rs10838725, INPP5D
rs35349669, PTK2B rs2883497, SORL1 rs11218343, and
SORL1 rs1131497 were not genotyped on either ADNI
GWAS array and needed full imputation. The following var-
iants were only genotyped on one of the platforms and
needed partial imputation: NME8 rs2718058 in ADNI1
and CLU rs933194, DSG2 rs8093731, MEF2C rs190982,
and ZCWPW1 rs1476679 in ADNI-GO/2 (Supplementary
Table 2). The imputation procedures have been previously
described [38]. Imputation was performed using MACH
and minimac methodology and the 1000 Genomes project
(www.1000genomes.org) as the reference panel. The accu-
racy threshold was set at r2 5 0.30.
We assessed Hardy-Weinberg equilibrium (HWE) using
the –hardy option in PLINK. In the test, we used a quantita-
tive phenotype (global cortical metabolism) and a case-
control phenotype. Our results indicate that all 27 single
nucleotide polymorphisms (SNPs) do not show any evidence
of deviation from HWE (P-value . .01). The accepted sig-
nificance threshold for declaring SNPs thought to be in HWE
is P-value , .001.

Nine of our 20 genes were represented by more than one
SNP. Given that such variants could be in linkage disequilib-
rium (LD) and introduce colinearity bias, we performed LD
analyses followed by Cohen kappa (k) statistics
(Supplementary Table 3 and Supplementary Figure 1).
When variants providing identical information (those with
high LD and high k) were detected, we chose the SNP
with the smallest amount of missing data. This reduced
our variants from 36 to 27.

We assessed the allele frequencies for each gene variant.
SNPs were coded by minor allele dosage except for the
following: ABCA7 rs3764650 GG/GT versus TT, CASS4
rs7274581 CC/TC versus TT, CLU rs9331949 AG/GG
versus AA, DSG2 rs8093731 TT/TC versus CC, FERMT2
rs17125944 CC/TC versus TT, and SORL1 rs112183431
CC/TC versus TT where the minor allele homozygote fre-
quency was less than 2%.
2.3. MRI and FDG PET data acquisition and analyses

The MRI acquisition and preprocessing protocols can be
found on www.adni-info.org. ADNI MRI data acquisition
and preprocessing have been previously described elsewhere
[39–41]. Briefly, we downloaded preprocessed MRI data
from LONI IDA (https://ida.loni.usc.edu) [42]. Seven hun-
dred eighty-five subjects had 3T scans available, and for
the remaining 715 subjects, we used 1.5T data. MRI field
strength was included as a covariate in all MRI analyses.
We analyzed all scans using voxel-based morphometry in
Statistical Parametric Mapping (SPM8), as described previ-
ously [43,44]. Scans were downloaded from the ADNI site in
NifTI format, coregistered to MNI space, bias corrected, and
segmented into gray matter (GM), white matter, and
cerebrospinal fluid compartments using SPM templates.
GM maps were converted to 1 ! 1 ! 1 mm voxel
resolution and smoothed using 10-mm full-width half
maximum Gaussian kernel yielding GM density data. Total
intracranial volume (ICV) and baseline mean medial tempo-
ral lobe thickness measures were extracted for each subject
using FreeSurfer version 5.1, as described previously
[45,46]. The medial temporal region of interest included
the entorhinal, fusiform, parahippocampal, and
temporopolar cortical areas.

The FDG PET acquisition and preprocessing protocols
can be found on www.adni-info.org. PET scanners and
related equipment across sites were held to the same qual-
ifications, calibration, and normalization standards, as
described in detail [47]. We downloaded preprocessed
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FDG PET data from LONI IDA (https://ida.loni.usc.edu).
These scans were already averaged, aligned to a standard
space, resampled to a standard image and voxel size
(2 ! 2 ! 2 mm), smoothed to a uniform resolution as pre-
viously described [47]. The downloaded images were
aligned to each corresponding MRI image on a subject-
by-subject basis in MNI space using SPM8, as previously
described [46]. Each scan’s intensity was scaled to the
pons to create standard uptake value ratio (SUVR) images.
Finally, baseline mean FDG SUVR in bilateral posterior
cingulate was extracted for each subject [48,49].
2.4. Statistical analyses
2.4.1. R statistical analyses
The distributions of clinical and demographic character-

istics (age, sex, education, MMSE, APOE ε4 allele dosage,
diagnosis) for each variant were analyzed using t tests or
chi-square tests with two-sided P-values as appropriate.

Our main analyses were done in R. First, we performed
stepwise linear regression with all 27 AD risk variants as
predictors and age, gender, education, and APOE ε4 allele
dosage as covariates in the pooled sample and then in each
diagnostic group. We used medial temporal GMD or poste-
rior cingulate SUVR, respectively, as outcome measures.
Additional covariates were the diagnosis in the pooled ana-
lyses and magnetic field strength and ICV in all MRI ana-
lyses. The decision to exclude variables in the stepwise
regression models was based on the Akaike information cri-
terion using the critical P-value of .157 [50]. Given that all
the risk genes were previously validated (i.e., all were candi-
date genes) and we used a multivariable model, we set our
significance threshold at P , .05. After discovering stage-
specific genetic influences, we repeated the pooled sample
analyses introducing interaction terms between the genetic
variants retained in our models and diagnosis.

2.4.2. Analyses in imaging space
All imaging analyses were done in exploratory fashion.

We reproduced the final stepwise regression models using
voxelwise regression in SPM8 for visualization purposes to
explore, on a whole-brain level, the extent and spatial pattern
of these imaging genetic associations established using a re-
gion of interest approach. These models included all variants
retained in the R stepwise linear regression models and were
covaried for age, gender, education, and APOE ε4 allele
dosage. Consistent with our original regression model, the
pooled analyses also included diagnosis as a covariate, and
the MRI analyses were additionally controlled for MRI field
strength and ICV. Due to the exploratory nature of our sec-
ondary results, we used a less-stringent visualization voxel-
wise threshold, which was uncorrected P , .01 with a
minimum cluster size (k) of 50 voxels. Next, we applied
cluster-level family-wise error (FWE) and false discovery
rate (FDR) correction and sought out the within-cluster
peak effects for all genetic variants identified in our models.
3. Results

Group comparisons of demographic characteristics and
distributions of the genotypes that were retained in the
regression models are shown in Tables 1 and 2 for the
MRI and PET samples, respectively. As expected, AD
subjects were the oldest, least educated, had the greatest
frequency of APOE ε4 homo- and heterozygotes, and
performed the worst on MMSE (Tables 1 and 2). There
were no significant differences in age, gender, education,
MMSE, and APOE ε4 allele dosage distribution between
carriers and noncarriers or by allele dosage for any of the
genotypes except the following: DSG2 minor allele
carriers were more likely to be male (P 5 .028 in the
FDG sample) and less likely to be APOE ε4 carriers
(P 5 .04 in the MRI sample); EPHA1 rs11767557 minor
allele carriers were less likely to be APOE ε4 carriers
and had significantly higher MMSE scores in the FDG
sample (P 5 .037 and P 5 .047, respectively); SORL1
rs11218343 minor allele carriers were less educated and
more likely to be male in both samples (MRI: P 5 .01
and P 5 .008, and FDG P 5 .008 and P 5 .026,
respectively), and ZCWPW1 risk allele carriers were
significantly less educated and had higher MMSE scores
in both samples (MRI P 5 .0012 and P 5 .034, and FDG
P 5 .025 and P 5 .034, respectively). For completeness,
the allele dosage for all 27 variants including the ones
not retained in our models can be seen in Supplementary
Tables 4 and 5.

APOE ε4 showed the expected positive association with
GMD in the NC andMCI group (Fig. 1 top). In the symptom-
atic MCI group, we saw a strong hippocampo-centric
pattern, indicating that MCI carriers had greater hippocam-
pal loss of GMD compared to MCI noncarriers. In the de-
mentia group, we found the opposite association. APOE
ε4-negative dementia subjects had greater cortical loss of
GMD than APOE ε4-positive subjects, indicative of greater
cortical neurodegeneration. APOE ε4 was associated with
widespread hypometabolism in the MCI group (Fig. 1 bot-
tom). APOE ε4 showed a much less pronounced effect in
the dementia stage indicating that both carriers and noncar-
riers experienced significant, widespread hypometabolic
changes.
3.1. MRI analyses
3.1.1. Pooled sample
In the pooled sample, the stepwise linear regression

model achieved an R2 5 0.4, P , .0001. SLC24A4/RIN3
rs10498633 was the only variant that was significantly
associated with mean medial temporal lobe GMD in the
pooled sample (c2 5 11.8, P 5 .003). ABCA7
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Table 1

Descriptive characteristics and distribution of the genotypes of the MRI sample

Variables NC (N 5 441) MCI (N 5 764) DEM (N 5 294) P

Age, mean years (SD) 74.1 (5.7) 72.6 (7.6) 74.6 (7.9) ,.001

Sex, N male (%) 222 (50) 453 (59) 165 (56) .01

Education, mean years (SD) 16.4 (2.6) 16.0 (2.8) 15.2 (3.0) ,.001

MMSE, mean (SD) 29.1 (1.1) 27.6 (1.8) 23.3 (2.1) ,.001

APOE ε4, % 0/1/2 71/27/2 49/40/11 34/47/19 ,.001

ABCA7 rs3752246, % 0/1/2 69/29/2 68/28/4 67/30/3 .58

CELF1 rs10838725, % 0/1/2 46/45/9 44/46/10 45/48/7 .45

EPHA1 rs11771145, % 0/1/2 44/44/12 43/45/12 45/42/13 .95

FERMT2 rs17125944, % 0/1 85/15 84/16 78/22 .02

INPP5D rs35349669, % 0/1/2 30/48/22 30/46/24 26/51/23 .52

SLC24A4/RIN3 rs10498633, % 0/1/2 60/35/5 61/34/5 60/35/5 .99

ZCWPW1 rs1476679, % 0/1/2 50/41/9 51/41/8 60/33/7 .08

Abbreviations: MRI, magnetic resonance imaging; NC, normal control; MCI, mild cognitive impairment; DEM, dementia; SD, standard deviation.

NOTE. Bold text indicates a significant P value (P ,0.05).

E. Stage et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 5 (2016) 53-66 57
rs3752246 and FERMT2 rs17125944 were retained in the
regression output based on the selection criteria but were
not statistically significant. See Fig. 2 for the exploratory
visualization of these associations and Table 3 for FWE-
and FDR-corrected cluster-level results and within-cluster
peak effects for genetic variants identified in our models.

3.1.2. Analyses within diagnostic groups
We found neither significant nor trend-level associations in

the NC group. In the MCI group, the model achieved an
R2 5 0.26. SLC24A4/RIN3 rs10498633 (c2 5 11.3,
P 5 .004) and ZCWPW1 rs1476679 (c2 5 7.3, P 5 .026)
reached significance. CELF1 rs10838725 (c2 5 5.2,
P 5 .073) was trending. In the dementia group, the model
achieved an R2 5 0.19, P , .0001. ABCA7 rs3752246
Table 2

Descriptive characteristics and distribution of the genotypes of the FDG PET sam

Variables NC (N 5 381)

Age, mean years (SD) 74.3 (6.2)

Sex, N male (%) 190 (50)

Education, mean years (SD) 16.4 (2.7)

MMSE, mean (SD) 29.0 (1.2)

APOE ε4, % 0/1/2 73/25/2

CD2AP rs9349407, % 0/1/2 49/44/7

CELF1 rs10838725, % 0/1/2 48/42/10

CLU rs11136000, % 0/1/2 36/50/14

CLU rs9331949, % 0/1 95/5

CR1 rs12034383, % 0/1/2 14/49/37

DSG2 rs8093731, % 0/1 98/2

EPHA1 rs11771145, % 0/1/2 44/44/12

EPHA1 rs11767557, % 0/1/2 66/30/4

MS4A6A rs610932, % 0/1/2 31/48/21

NME8 rs2718058, % 0/1/2 39/47/14

PTK2B rs28834970, % 0/1/2 42/42/16

SLC24A4/RIN3 rs10498633, % 0/1/2 61/34/5

SORL1 rs11218343, % 0/1 91/9

Abbreviations: FDG PET, F18-fluorodeoxyglucose positron emission tomograp

SD, standard deviation; MMSE, Mini–Mental State Examination.

NOTE. Bold text indicates a significant P value (P ,0.05).
(c2 5 8.5, P 5 .014), EPHA1 rs11771145 (c2 5 11.6,
P 5 .003), and INPP5D rs35349669 (c2 5 6.4, P 5 .042)
were significantly associated with mean medial temporal
lobe GMD. SLC24A4/RIN3 rs10498633 (c2 5 5.4,
P 5 .068) was trending. See Fig. 2 for the exploratory pattern
of these associations.

Next, we repeated the pooled sample analyses intro-
ducing interaction terms between the genetic variants re-
tained in our models and diagnosis. The following variants
showed significant interaction effect with diagnosis—
EPHA1 rs11771145 (F 5 3.2, P 5 .01) and SLC24A4/
RIN3 (F5 2.7, P5 .03). Please note that the R statistical an-
alyses and the analyses in imaging space might differ. This is
because in our R statistics model, we use a circumscribed
ROI, in the case of MRI, the medial temporal region, while
ple

MCI (N 5 634) DEM (N 5 243) P

72.6 (7.6) 75.0 (7.7) ,.001

380 (60) 148 (61) .003

16.1 (2.7) 15.4 (2.9) ,.001

27.8 (1.8) 23.1 (2.8) ,.001

51/38/11 33/50/17 ,.001

53/40/7 49/40/11 .22

44/46/10 43/50/4 .27

37/50/13 43/42/15 .28

97/3 95/5 .31

15/48/37 21/46/33 .19

98/2 97/3 .84

45/42/13 43/44/13 .94

70/27/3 63/34/3 .29

37/47/16 38/45/17 .25

40/45/15 38/49/13 .88

42/42/16 39/49/12 .39

62/34/4 58/37/5 .87

92/8 93/7 .55

hy; NC, normal control; MCI, mild cognitive impairment; DEM, dementia;



Fig. 1. APOE4 effect on brain atrophy (top) and hypometabolism (bottom). Results are displayed using P, .01 (uncorrected) and cluster size (k) of 50 voxels.

Abbreviations: FDG PET, F18-fluorodeoxyglucose positron emission tomography; MRI, magnetic resonance imaging.
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the whole-brain exploratory results show the effect of the
variant across the brain.
3.2. FDG PET analyses
3.2.1. Pooled sample
In the pooled sample, the stepwise linear regression

model achieved an R2 5 0.13, P , .0001. EPHA1
rs11767557 showed significant associations with brain
metabolism (c2 5 6.3, P 5 .042). PTK2B rs28834970
(c2 5 5.6, P 5 .059), MS4A6A rs610932 (c2 5 5.5,
P 5 .065) and SLC24A4/RIN3 rs10498533 (c2 5 4.6,
P 5 .098) showed trend-level associations. CLU
rs11136000 and EPHA1 rs11771145 were included in the
model based on the selection criteria but were not statisti-
cally significant.

See Fig. 3 for the exploratory visualization of these
associations and Table 4 for FWE- and FDR-corrected clus-
ter-level results and within-cluster peak effects for genetic
variants identified in our models.

3.2.2. Analyses within diagnostic groups
In the NC group, the stepwise linear regression model

achieved an R2 5 0.14, P , .0001. SLC24A4/RIN3
rs10498533 (c2 5 6.3, P 5 .043), NME8 rs2718058
(c2 5 6.0, P 5 .049), and CD2AP rs9349407 (c2 5 6.1,
P 5 .048) showed significant associations, whereas DSG2
rs8093731 (c2 5 3.4, P 5 .064), CR1 rs12034383
(c2 5 4.9, P 5 .087), and CELF1 rs10838725 (c2 5 5.386,
P 5 .068) were trending. CLU rs9331949 and PTK2B
rs28834970 were included in the model based on the selection
criteria but were not statistically significant. In the MCI group,
the stepwise linear regression model achieved an R2 5 0.09,
P , .0001. CLU rs9331949 was trending (c2 5 3.4,
P 5 .065), whereas MS4A6A rs610932 was included based
on the selection criteria but was not statistically significant.
In the dementia stage, the model achieved an R2 5 0.07,
P5 .034. SORL1 rs11218343 showed trend-level significance
(c2 5 3.5, P 5 .063), whereas NME8 rs2718058 and CD2AP
rs9349407 were included based on the selection criteria but
were not statistically significant. See Fig. 3 for the exploratory
visualization of these associations.

Next, we repeated the pooled sample analyses intro-
ducing interaction terms between the genetic variants re-
tained in our models and diagnosis. The following variants
showed significant interaction effect with diagnosis—
CD2AP rs9349407 (F 5 2.4, P 5 .04), CLU rs9331949
(F 5 3.5, P 5 .03), and NME8 rs2718058 (F 5 3.1,
P 5 .01), CR1 rs12034383 (F 5 2.3, P 5 .06) and SORL1



Fig. 2. Stepwise linear regression results—MRI analysis. Results are displayed using P , .01 (uncorrected) and cluster size (k) of 50 voxels. Abbreviation:

MRI, magnetic resonance imaging.
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Table 3

Family-wise error (FWE) and false discovery rate (FDR)-corrected cluster analyses and within-cluster peak effects for the genetic variants identified in the

exploratory MRI analyses

DX group Gene variant

Cluster-level Peak level
Talairach

coordinates

Brain region (Brodmann

area [BA])pFWE-corr qFDR-corr kE puncorr T puncorr

DEM ABCA7 rs3752246 ,.0001 ,0.0001 924757 ,.0001 9.72 ,.0001 211 223 63 L medial frontal gyrus (BA6)

EPHA1 rs11771145 .04 0.051 13,081 .001 3.86 ,.0001 252 228 61 L postcentral gyrus (BA2)

.007 0.017 1889 ,.0001 4.01 ,.0001 52 230 59 R postcentral gyrus (BA2)

SLC24A4/RIN3 rs10498633 .007 0.012 18,621 ,.0001 3.78 ,.0001 214 1 46 L cingulate gyrus (BA24)

Abbreviations: MRI, magnetic resonance imaging; pFWE-corr, family-wise error-corrected P-value; qFDR-corr, false discovery rate–corrected q-value; kE,

cluster size; puncorr, uncorrected P-value; T, T statistic; DEM, dementia.

NOTE. Bold text indicates a significant P value (P ,0.05).
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rs11218343 (F 5 2.9, P 5 .06) showed trend-level interac-
tions. Please note that the R statistical analyses and the ana-
lyses in imaging space might differ. This is because in our R
statistics model, we use a circumscribed ROI, in the case of
FDG PET the posterior cingulate region, while the whole-
brain exploratory results show the effect of the variant across
the brain.
4. Discussion

To our knowledge, this is the first comprehensive anal-
ysis of the effect of the top 20 AD risk variants on GMD
and brain metabolism. In our MRI analyses, we found no
genetic influences on GMD in NC. In the MCI stage,
SLC24A4/RIN3 rs10498633 and ZCWPW1 rs1476679
showed significant effects, whereas in the dementia stage,
ABCA7 rs3752246, EPHA1 rs11771145, and INPP5D
rs35349669 were significantly associated with GMD. In
our FDG PET analyses, the only significant associations
were seen in the NC control group for SLC24A4/RIN3
rs10498533, NME8 rs2718058, and CD2AP rs9349407.
The reported associations of ABCA7, ZCWPW1, and
INPP5D with GMD, and CD2AP with brain metabolism,
are novel.

Many of our variants displayed stage-specific associa-
tions, which is likely due to the nature of AD pathological
biomarker changes from the presymptomatic stage to de-
mentia. These stage-specific associations are in agreement
with the biomarker progression as proposed by Jack et al.
[51]. Jack’s biomarker progression model postulates that
neurodegenerative changes begin in the late asymptomatic
stages as NC individuals start to transition to MCI and that
FDG PET abnormalities precede brain atrophy [51]. Both
neurodegenerative biomarkers become progressively more
abnormal over the course of the disease. Our findings agree
with this model. Our results indicate neither significant nor
trend-level associations with GMD in the NC group, but
significant associations were detected in the MCI and de-
mentia stages. We also see a modality effect progression
that fits with the Jack model. SLC24A4/RIN3 shows signif-
icant association with brain metabolism in the presymp-
tomatic stages and associations with GMD in the MCI
group.

Recent analyses from our group on the top 20 AD genes
and brain amyloidosis revealed that, after APOE ε4,
ABCA7 had the strongest effect on brain amyloidosis,
with the effect being most pronounced in the MCI stage
[52]. In the present study, we observe a strong association
of ABCA7 with GMD in the dementia group. These associ-
ations also seem to follow the biomarker progression, as
Ab deposition begins in the presymptomatic to early
MCI phase and global decreases in GMD begin in late
MCI to dementia phase. Associations of ABCA7 with
both brain atrophy [21] and amyloidosis [35–37] have
been previously reported.

In a similar manner, our previous work showed that
EPHA1’s strongest effect on brain amyloidosis is in the pro-
dromal phase [52]. In the present study, our MRI results
show a significant association with GMD in the dementia
stages only. To date, two additional studies have described
EPHA1 associations with brain atrophy [53,54] and one
also detected an association with brain metabolism as we
did here [53].

Next, we found it pertinent to briefly review the literature
on the function and central nervous system associations for
each of the genes in our models.

ATP-binding cassette subfamily A member 7 (ABCA7)
encodes a 2146–amino acid member of the ABC trans-
porter family comprised of proteins involved in lipid trans-
port [55]. ABCA7 is highly expressed in the central nervous
system and in microglia [56]. Loss of function of endoge-
nous ABCA7 increases b-secretase cleavage of APP to Ab
in brain lysates and in murine models [57]. Fifteen ABCA7
loci were recently evaluated for associations with cerebro-
spinal fluid Ab and tau levels, brain atrophy, and brain hy-
pometabolism. Several ABCA7 variants had significant
associations with amyloid deposition, although an associa-
tion with brain atrophy was not reported there [58]. How-
ever, another group has previously found such an
association in a different independent imaging genetic
cohort [21]. Additionally, one rare missense mutation
variant of ABCA7 (rs7297358) was found to be protective
for AD [59].



Fig. 3. Stepwise linear regression results of FDG PET. Results are displayed using P, .01 (uncorrected) and cluster size (k) of 50 voxels. Abbreviation: FDG

PET, F18-fluorodeoxyglucose positron emission tomography.
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The CD2-associated protein gene (CD2AP) encodes a
639–amino acid scaffolding protein that is named by its
association with the T-cell and natural killer cell adhe-
sion molecule cluster of differentiation 2 (CD2).
CD2AP is a cytokinetic regulator that might be influ-
encing neuronal survival by reducing the potency of glial
cell–derived neurotrophic factor [60]. In cell culture,
CD2AP suppression results in lower levels of APP, less
Ab release, and a lower Ab42/Ab40 ratio while having lit-
tle to no effect on Ab deposition [61]. CD2AP knock-
down significantly increases Ab protein levels, whereas
APP remained at a similar level to the wild type [62].
Recent research in CD2AP knockout mice shows that
CD2AP’s association with LOAD risk may be at least
in part due to an effect on the cerebrovascular unit
[63]. To our knowledge, there are no reported imaging
associations of CD2AP to date.

EPH receptor A1 (EPHA1) belongs to the EPH family
of receptor tyrosine kinases. EPHA1 codes for a 976–
amino acid protein with a single kinase domain [64].
EPHA1 is highly expressed in cerebral cortex and hippo-
campus (http://www.proteinatlas.org/ENSG000001469

http://www.proteinatlas.org/ENSG00000146904-EPHA1/tissue
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04-EPHA1/tissue) and plays a crucial role in cortical and
axonal development [65,66]. EPHA1 directs contact-
dependent bidirectional signaling by binding the
membrane-bound ephrin-A family of ligands [67,68].
As already discussed, EPHA1 has been previously
associated with brain atrophy and brain metabolism
[53,54].

Inositol polyphosphate-5-phosphatase D (INPP5D) en-
codes a 1888–amino acid protein that plays a role in a num-
ber of inflammatory pathways and in regulation of cytokine
signaling [69,70]. INPP5E, a closely related gene to
INPP5D, is a crucial regulator of autophagy [71].
Autophagy has been shown in many instances to be dysregu-
lated in AD [72–74]. INPP5D may also play a role in
suppression of cytokine release from microglia or
astrocytes [75]. INPP5D has been significantly associated
with several central nervous system pathologies, including
macroscopic and microscopic infarcts, Lewy bodies, and
hippocampal sclerosis [76].

NME family member 8 (NME8) encodes a 588–amino
acid protein kinase. Until recently, NME8 was associated
with nonneurologic diseases such as primary ciliary dyski-
nesia [77] and osteoarthritis [78,79]. In a recent ADNI
study, however, NME8 rs2718058 was shown to have a
neuroprotective effect against hippocampal atrophy and
brain hypometabolism [80].

Solute carrier family 24 (sodium/potassium/calcium
exchanger) member 4 (SLC24A4)/Ras and Rab Interactor
3 (RIN3) are indicated in AD together because the candi-
date polymorphism lies between both genes on chromo-
some 14q32.12. SLC24A4 encodes a 622–amino acid
potassium-dependent sodium-calcium exchanger [81].
SLC24A4 appears to take part in lipid metabolism [82].
SLC24A4 CpG methylation sites were also associated
with Ab burden and tau pathology [83]. In a recent study,
SLC24A4 knockout mice showed brain glucose hypome-
tabolism [84]. Interestingly, we found a similar effect in
NC.

RIN3 encodes a 985–amino acid guanine exchange fac-
tor for RAB5B and RAB31 and plays an important role in
the transport of early endosomes [85,86]. In a transgenic
model, a mutation in APP was shown to contribute to
early endosomal abnormalities and enlargement, which
leads to loss of cholinergic neurons [87]. RAB GTPase
expression is increased in MCI subjects and in aging
brains [88]. RIN3 also interacts with BIN1, which has
recently been linked to tau pathology [89]. To our knowl-
edge, there are no reported imaging associations of RIN3
to date.

Zinc finger CW-type and PWWP domain containing 1
(ZCWPW1) codes for a 648–amino acid protein that has
recently been identified as a risk variant for late-onset AD
[90]. Zinc fingers including ZCWPW1 are crucial compo-
nents of epigenetic regulation [91–93]. To our knowledge,
there are no reported imaging associations of ZCWPW1 to
date.

http://www.proteinatlas.org/ENSG00000146904-EPHA1/tissue
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The APOE ε4 allele dosage effect on cortical GMD
warrants some discussion. Structurally, we found the ex-
pected negative association of APOE ε4 allele dosage
with GMD in NC and MCI with a strong predilection
for the medial temporal lobe. In the dementia group,
however, APOE ε4-negative individuals showed more
profound atrophy than APOE ε4 carriers with a broad
neocortical distribution. Given that a far greater propor-
tion of APOE ε4-negative dementia subjects were amy-
loid negative (94% vs. 28% of the amyloid-positive
dementia subjects, P , .0001), one could safely conclude
that the profound cognitive decline of many of these sub-
jects is due to other neurodegenerative diseases. Thus,
the finding greater atrophy in APOE ε4 noncarrier de-
mentia subjects in extra-hippocampal locations is not
surprising.

Several strengths and limitations of our work are
worth noting. The major strength of our study is our
multivariable approach. This allows us to more accu-
rately model the associations with AD biomarkers as
they exist in vivo. Using ADNI is another strength as
the ADNI protocol includes a rigorous clinical,
biomarker, and genetic characterization for all enrolled
subjects. By standardizing their data collection and pro-
cessing strategies, ADNI minimizes between-site varia-
tions as much as possible. ADNI is a multisite study
modeled by clinical trials. As such, ADNI uses more
stringent inclusion and exclusion criteria typical of clin-
ical trial methodology. Hence all observations made
here need to be further replicated in the general popula-
tion. Another limitation is that our study design is a
cross-sectional analysis. From our data alone, it is not
possible to reliably draw conclusions about changes in
metabolism or atrophy over time. We do, however, intend
to address this in future studies by taking a longitudinal
approach to our work. Despite this limitation, this study
has identified several key genes that may exert their ef-
fect in specific stages, which need to be examined in
future research.

In conclusion, we found several AD risks and protective
loci that may play a key role in GMD and brain metabolism.
We also noted stage-specific associations for certain vari-
ants, which may follow a specific progression of AD bio-
markers throughout the disease. Importantly, many of
these stage associations take place in the context of the pro-
posed biomarker timeline.
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RESEARCH IN CONTEXT

1. Systematic review: Our goal was to analyze the ef-
fects of the top 20 Alzheimer disease (AD) risk genes
on brain gray-matter density (GMD) and meta-
bolism. We assessed relevant literature by searching
PubMed and Science Direct for studies describing
imaging genetics associations in AD.

2. Interpretation: SLC24A4, ABCA7, and EPHA1 have
significant stage-specific associations that followed
the predicted biomarker pathway. We discovered
novel associations of ZCWPW1, INPP5D, and
ABCA7 with brain GMD and CD2AP with brain
metabolism.

3. Future directions: Future longitudinal studies of the
observed associations will aptly measure defined
changes over time. This approach will be critical in
accurately modeling the genetic effects on disease
progression.
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