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Abstract

Background: Prostatic Acid Phosphatase (PAP) is an enzyme that is produced primarily in the prostate and
functions as a cell growth regulator and potential tumor suppressor. Understanding the genetic regulation of
this enzyme is important because PAP plays an important role in prostate cancer and is expressed in other
tissues such as the brain.

Methods: We tested association between 5.8 M SNPs and PAP levels in cerebrospinal fluid across 543 individuals in
two datasets using linear regression. We then performed meta-analyses using METAL =with a significance threshold of
p < 5 × 10−8 and removed SNPs where the direction of the effect was different between the two datasets, identifying
289 candidate SNPs that affect PAP cerebrospinal fluid levels. We analyzed each of these SNPs individually and
prioritized SNPs that had biologically meaningful functional annotations in wANNOVAR (e.g. non-synonymous, stop
gain, 3’ UTR, etc.) or had a RegulomeDB score less than 3.

Results: Thirteen SNPs met our criteria, suggesting they are candidate causal alleles that underlie ACPP regulation and
expression.

Conclusions: Given PAP’s expression in the brain and its role as a cell-growth regulator and tumor suppressor, our
results have important implications in brain health such as cancer and other brain diseases including
neurodegenerative diseases (e.g., Alzheimer’s disease and Parkinson’s disease) and mental health (e.g., anxiety,
depression, and schizophrenia).
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Background
Prostatic Acid Phosphatase (PAP)—an enzyme expressed
by the Acid Phosphatase, Prostate (ACPP) gene—is pre-
dominantly produced in the prostate, and is an import-
ant biomarker used to assess and monitor prostate
cancer [1–3], but is also expressed in other tissues like
the brain [4–7]. Recent research suggests PAP is a key
cell growth regulator and potential tumor suppressor

gene [8–10]. Additional studies demonstrate ACPP is
expressed in the brain and suggest that PAP plays a crit-
ical role in preventing cell proliferation, cancer cell inva-
sion, and neurite retraction [11, 12]. PAP’s function has
critical implications in mental health diseases such as
anxiety, depression, and schizophrenia [5], neurodegen-
erative diseases such as Alzheimer’s and Parkinson’s dis-
ease [13], and possibly in brain cancer. Yet, little is
known about ACPP’s function and regulation in the
brain.
To date, research regarding ACPP function is almost

exclusively limited to prostate cancer research, but ACPP
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is known to be expressed at lower levels in other tissues,
such as the brain [4–7]. Specifically, ACPP is expressed
in brain regions related to language, motor coordination,
cognitive function, and self-awareness [4–7], suggesting
it plays an important role in brain health. While PAP’s
role within nervous tissue is not fully elucidated, it is
known to localize in synaptic nerve endings [5] and co-
localizes with SNAPIN [14], a protein that binds to
SNAP-25 [15], which is associated with schizophrenia
[16–19]. Recent studies further suggest PAP is a key cell
growth regulator and potential tumor suppressor gene in
the prostate [8–10], but PAP may have similar roles in
the brain. A study by Tanaka et al. demonstrated that
PAP degrades lysophosphatidic acid (LPA) in seminal
plasma [11], and LPA is known to stimulate cell prolifer-
ation and prevent apoptosis [11] and has also been
strongly implicated in cancer cell invasion [12]. Tanaka
et al. further reported that lysophosphatidylcholine
(LPC) and lysophospholipase D (lysoPLD) are found in
CSF [11]. LPC is an LPA precursor and lysoPLD pro-
duces LPA from LPC, suggesting that LPA is likely
present in the brain. These data suggest PAP may play a
significant role protecting the brain from de novo brain
tumors and metastatic tumors by inhibiting cell prolifer-
ation and cancer cell invasion, respectively.
LPA is also known to cause neurite retraction [11].

Neurites are a general term for axons and dendrites,
generally used when it’s not possible to differentiate
between the two (e.g., during development). A corre-
sponding study by Sayas et al. demonstrated that in-
ducing differentiated SY-SH5Y human neuroblastoma
cells with LPA causes neurite retraction and site-
specific Alzheimer's disease-like Tau phosphorylation
[13]. These studies further suggest PAP plays a crit-
ical role in neuronal health, perhaps especially during
development.
A study by Nousiainen et al. explored PAP’s function

in the brain using PAP knockout mice [5]. Their results
demonstrate that PAP knockout mice have enlarged lat-
eral ventricles, a common phenotype in movement and
neurodegenerative disorders such as Alzheimer’s disease,
dementias, bipolar disorder, schizophrenia, Parkinson’s
disease, and Huntington’s disease [5]. They also observed
increased anxiety in the mice and decreased prepulsed
inhibition. Molecular explanations for their observations
may include increased GABAergic transmission and
mislocalization of SNAPIN [5]. Increased GABAeric
transmission inhibits neuronal excitability [20] while
mislocalization of SNAPIN may affect neurotransmitter
release [5], both of which may affect neuronal homeosta-
sis and brain health.
Here we have conducted a genome-wide association

study of PAP levels in cerebrospinal fluid (CSF) in 543
individuals from two datasets. Further characterization

of the variants that we have identified may lead to a
deeper understanding of PAP regulation and provide
important insights into its effects on prostate cancer,
brain cancer, mental health disorders, and neurodegen-
erative diseases.

Methods

A. Subjects and data description

CSF samples were collected from 246 individuals in
the Knight-Alzheimer’s Disease Research Center at
Washington University School of Medicine (Knight
ADRC) and from 297 individuals in the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Alzheimer’s
Disease status was 93.5 % control and 6.5 % case in
the Knight ADRC samples, and 86.5 % and 13.5 % in
the ADNI samples. Levels for 190 biomarkers were
measured for each sample using the Human Discovery-
MAP Panel v1.0 and a Luminex 100 platform [21] and
samples were genotyped using the Illumina 610 or the
Omniexpress chip. A description of the Knight ADRC
samples and the associated CSF collection methods has
been previously published [22, 23]. ADNI CSF samples
were collected as part of the ADNI biomarker study [24],
and were obtained from the ADNI database (adni.lo-
ni.usc.edu). All samples are of European descent. All
individuals whose data were included in this study
were explicitly consented, following appropriate Insti-
tutional Review Board policies.

B. SNP imputation

SNPs were imputed as previously described. Briefly,
data from the 1000 Genomes Project (June 2012 release)
were used to impute SNPs using Beagle. Imputed SNPs
with the following criteria were removed: (1) an r2 of 0.3
or lower, (2) a minor allele frequency (MAF) lower than
0.05 (3) out of Hardy-Weinberg equilibrium (p < 1 × 10
− 6), (4) a call rate lower than 95 %, or (5) a Gprobs
score lower than 0.90. Exactly 5,815,690 SNPs passed
the QC process.

C. Data cleaning and analysis

All analyses were conducted using PLINK, a whole
genome association analysis toolset [25]. We performed
genotype quality control on the Knight ADRC and
ADNI CSF datasets by first excluding SNPs that
exceeded thresholds for Hardy-Weinberg Equilibrium
[26, 27] (−−hwe 0.00001), missing genotype rate (−−geno
0.05), and minor allele frequency (−−maf 0.01). We then
excluded individuals with a missing genotyping rate
greater than 2 % (−−mind 0.02). Exactly 246 individuals
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from Knight ADRC and 282 samples from ADNI
remained after data cleaning. Remaining Knight ADRC
and ADNI samples consisted of 40 % and 61 % males,
respectively. ADNI samples varied in age from 58 to
91 years, with an average age of 76 years, and Knight
ADRC samples varied in age from 49 to 91 years, with
an average age of 73 years.
After data cleaning, we conducted a linear regression

for all remaining SNPs within each data set to test for an
association with CSF PAP levels, adjusting for age, gen-
der, and the first two principle components generated
using EigenSoft [28, 29]. The full script for our PLINK
analyses is found in the Appendix. We then performed a
meta-analysis across both data sets, accounting for sam-
ple size, p-values, and direction of effect using the de-
fault METAL [30] settings. We have included our scripts
in Additional files 1, 2, 3, 4, 5, 6 and 7 for convenience.
We retained all SNPs that had a meta-analysis p-value

less than 5 × 10−8 and that had the same direction of effect
in both the Knight ADRC and ADNI datasets. We
searched for all SNPs in the NHGRI catalog of published
genome-wide association studies [31] (downloaded July
16th, 2015) for known disease associations. We then used
RegulomeDB [32] and functional annotations from wAN-
NOVAR [33, 34] to identify SNPs that are biologically
likely to modify gene function or expression. Specifically,
we retained the 10 most significant SNPs and all signifi-
cant SNPs with a RegulomeDB score less than 3 or that
were non-synonymous, stop-gain, splice-site modifying,
etc., or are in untranslated regions (UTRs). UTR SNPs
have been shown to modify gene transcription and trans-
lation [35, 36]. RegulomeDB scores range from “1a” to “6”.
Lower scores indicate stronger evidence that the SNP af-
fects gene regulation based on both empirical data, such
as ChIP-seq, and whether the SNP is within a known tran-
scription factor binding motif. Any RegulomeDB score be-
tween “1a” and “1f” indicates the SNP is within a known
expression quantitative trait locus (eQTL), is known to
have transcription factors bind, and may have additional
evidence. While these scores indicate functional effects,
the associated SNP is not necessarily the causal variant.
All SNPs that met our inclusion criteria and are in or

near the given region were also reanalyzed using condi-
tional analyses to test whether there is one or multiple
independent effects in the region [37]. Conditional ana-
lysis is a follow-up method used to test if there are sec-
ondary association signals within a region by retesting
each SNP while including the top SNP as a covariate.
We chose the most significant SNP in the region to use
as a covariate in the conditional analyses.

Results
Our meta-analysis yielded 289 SNPs significantly associ-
ated with PAP CSF levels (Additional file 8). Of the 289

SNPs, 276 are located on chromosome 3, in or near the
ACPP gene, which is the gene that codes for PAP. We
generated plots in R failed to detect evidence of inflation
(genomic inflation factor = 1; Additional files 9 and 10).
We explored potential causal SNPs and identified 23

that met our inclusion criteria, including the top 10
SNPs with the most significant p-values, and the 13
most biologically significant SNPs based on their Regu-
lomeDB scores and functional annotations (Table 1).
None of the 289 SNPs were associated with human dis-
ease in the NHGRI GWAS catalog. Two SNPs,
rs16839055 and rs17182812, both received the score of
“1f” from RegulomeDB. In this case, both SNPs are in
LD with SNPs known to be associated with ACPP ex-
pression [31]. SNP rs3844501 has the strongest associ-
ation with PAP CSF levels (p = 1.743e-20) and is
approximately 2000 nucleotides upstream from the
ACPP transcription start site (Fig. 1). Numerous SNPs
proximal to rs3844501 are also highly associated and in
strong LD. SNP rs3889987 has a RegulomeDB score of
“2a”, implying it affects transcription factor binding be-
cause transcriptions factors have been observed binding
to the SNP, the SNP is in a transcription factor motif,
and matches a DNase footprint. There are 7 SNPs
(rs11714139, rs56226080, rs73211958, rs56030168,
rs4257547, rs11928839, and rs11917521) that received
scores of 2b, showing they are also known to affect tran-
scription factor binding and could affect PAP levels. The
score of 2a is ranked higher than 2b, indicating
rs3889987 is more likely to affect gene regulation. While
2a and 2b are similar, 2a is known to specifically match
transcription factor motifs. SNPs, rs14192, rs1804136,
and rs1042330 are all found in the 3’UTR, an important
gene region for regulation.
We performed conditional analyses including rs3844501

as a covariate in the linear regression. No SNPs in or near
ACPP were significant, suggesting there is one association
signal within the ACPP region.

Discussion
We identified 289 SNPs that show replicable association
with CSF PAP levels, the majority of which are found in or
close to ACPP, the gene that codes for PAP. Among these,
23 SNPs in or near ACPP are highly significant and demon-
strate evidence of functional effects, making them top can-
didates for being the causal allele for this association.
Conditional analyses strongly suggest there is a single

signal within the region. As is the case with any associ-
ation study, LD facilitates the discovery of associations,
but makes identifying the causal allele difficult. The SNP
most strongly associated with PAP CSF levels,
rs3844501, is approximately 2000 nucleotides upstream
of the ACPP transcription start site and has no known
functional impact. Data from RegulomeDB identifies
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rs16839055 and rs17182812 as the two most likely can-
didate variants, however RegulomeDB is not exhaustive,
and there are several other plausible candidates.
Based on current evidence, there are numerous mech-

anisms that can affect PAP protein levels in CSF includ-
ing transcription, translation, feedback loops, and
damaged proteins. Transcription is often most suspect
in expression analyses and one of the top SNPs we iden-
tified, rs56030168, is most likely to affect transcription
because it is less than 300 nucleotides upstream from
the ACPP transcription start site and, according to the
RegulomeDB score of “2b”, is known to have transcrip-
tion factors bound at that location and is a known
DNase peak. Given rs56030168’s location and other evi-
dence, it may affect transcription factor binding.
Rs16839055 is also upstream of ACPP and may affect
transcription, but is more than 26,000 nucleotides up-
stream from the transcription start site.

The 3’UTR SNPs rs14192, rs1804136, and rs1042330
could affect PAP levels by affecting both transcription
and translation. UTR regions are known to affect mRNA
stability, transport, and translation processes [38–41].
Any of these three SNPs may play an important role in
ACPP or PAP regulation.
None of the top 23 SNPs we identified were in ACPP

exons, but several are intronic. Intronic variants can
affect protein structure through splice modifications and
have even been experimentally shown to affect transcrip-
tion [42]. While intronic variants are typically less sus-
pect, they may play an important role in PAP levels.
While these SNPs are the most significant and bio-

logically likely eQTLs based on our criteria, there may
be other candidate eQTLs in the list of 289. They all
met the genome-wide significance p-value threshold and
have matching effect directions, but more biological data
will be necessary to support or refute their direct

Table 1 This table includes the 10 most significant SNPs and 13 other significant SNPs that have a RegulomeDB score less than 3,
are non-synonymous, a splicing variant, or are located in untranslated regions (UTRs). All 23 SNPs are located in or near the ACPP
gene on chromosome 3, which codes for PAP. There were no significant non-synonymous SNPs. The table includes SNP ids, refer-
ence and alternate alleles, minor allele frequency, predicted SNP function, and its directions in the Knight ADRC and ADNI data sets.
Also included are the p-values from ADNI and Knight ADRC alone, their meta-analysis p-value and their RegulomeDB score, where
available

SNP Minor
Allele

Major
Allele

MAF Predicted
Function

Direction ADNI
p-value

Knight ADRC
p-value

Meta-analysis
p-value

RegulomeDB
score

rs3844501 T G 0.1458 Intergenic ++ 1.972e-13 7.974e-09 1.743e-20 6

rs3762671 T C 0.1060 Intergenic ++ 3.815e-13 3.245e-08 1.515e-19 6

rs11716607 G A 0.0923 Intronic ++ 1.708e-12 3.615e-08 6.397e-19 No Data

rs56158166 T G 0.0921 Intronic ++ 1.708e-12 3.615e-08 6.397e-19 No Data

rs73213842 A T 0.0923 Intergenic ++ 1.708e-12 3.615e-08 6.397e-19 No Data

rs11706024 A G 0.0921 Intergenic ++ 1.708e-12 3.615e-08 6.397e-19 5

rs113143077 A G 0.0923 Intergenic ++ 1.708e-12 3.615e-08 6.397e-19 6

rs17344445 A G 0.0923 Intergenic ++ 1.708e-12 3.615e-08 6.397e-19 6

rs2887519 A G 0.0923 Intergenic ++ 1.708e-12 3.615e-08 6.397e-19 6

rs56073503 A T 0.0921 Intronic ++ 1.708e-12 3.615e-08 6.397e-19 6

rs3889987 T G 0.0913 Intergenic ++ 2.15E-13 4.08E-07 1.77E-18 2a

rs56030168 G A 0.1769 5upstream ++ 2.94E-11 1.34E-06 4.65E-16 2b

rs11714139 A G 0.1232 Intergenic ++ 1.25E-07 4.81E-04 5.41E-10 2b

rs56226080 C G 0.1228 Intergenic ++ 1.25E-07 4.81E-04 5.41E-10 2b

rs73211958 A C 0.1218 Intergenic ++ 1.25E-07 5.11E-4 5.82E-10 2b

rs16839055 T C 0.3081 Intergenic ++ 2.49E-05 2.52E-04 2.55E-08 1f

rs1804136 T G 0.3962 UTR3 ++ 4.80E-05 1.39E-04 2.57E-08 No Data

rs14192 C T 0.3964 UTR3 ++ 4.80E-05 1.39E-04 2.57E-08 5

rs1042330 A G 0.3962 UTR3 ++ 6.49E-05 1.39E-04 3.43E-08 No Data

rs17182812 T C 0.3962 Intronic ++ 6.49E-05 1.39E-04 3.43E-08 1f

rs4257547 G C 0.4113 Intronic ++ 5.19E-05 1.94E-04 3.87E-08 2b

rs11928839 A C 0.3954 Intronic ++ 6.49E-05 1.60E-04 3.93E-08 2b

rs11917521 C T 0.3954 Intronic ++ 6.49E-05 1.60E-04 3.93E-08 2b
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involvement. Additionally, our data are not whole exome
or genome and there may be causal variants in LD with
our top hits that were not genotyped. Full sequencing
data within the region may reveal other candidate causal
variations. Further research will be necessary to know
which SNPs affect PAP CSF levels, and particularly
whether they contribute to prostate cancer and other
PAP-related functions and diseases.

Conclusions
A plethora of studies suggest PAP plays an important
role in prostate cancer, but recent studies suggest that
PAP may play a critical role in brain health ranging from
cancers to various brain disorders. Based on current re-
search, we hypothesize that PAP’s role in brain health in-
cludes protecting against cancer development and
metastasis, protecting against neuronal death by regulat-
ing LPA levels, and generally protecting brain health by
contributing to neuronal homeostasis. In summary, this
study has identified a clear and replicable QTL in ACPP
for CSF PAP levels. Additional investigation of this locus
may lead to a better understanding of ACPP regulation

in the brain and additional insights into PAP’s role in
the brain.

Additional files

Additional file 1: File contains the PLINK script used to clean data and
find associations between SNPs and prolactin levels in the samples.
(DOCX 101 kb)

Additional file 2: File contains the forge_metal.py program, which is
used to run METAL on the samples form each dataset to combine data.
(DOCX 85 kb)

Additional file 3: File includes the command for running
forge_metal.py on ADNI dataset. (DOCX 36 kb)

Additional file 4: File includes the command for running
forge_metal.py on WU dataset. (DOCX 35 kb)

Additional file 5: File include the contents of METAL meta analysis
script. (DOCX 44 kb)

Additional file 6: File include the command to run METAL software.
(DOCX 29 kb)

Additional file 7: File contains the command to sort combined METAL
results. (DOCX 40 kb)

Additional file 8: File contains a table of 289 Significant SNPs. (DOCX
124 kb)

Fig. 1 Regional association plot showing rs3844501 has the strongest association with PAP CSF levels. We identified several SNPs associated with
PAP levels in CSF that are in or near the ACPP gene, which codes for PAP, and plotted association p-values in the region. rs3844501 has
the strongest association with PAP CSF levels and is located approximately 2000 nucleotides upstream of the ACPP transcription start site.
LD between rs3844501 and other SNPs in the region is strong
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Additional file 9: File contains a Q-Q plot of the CSF in the ADNI sam-
ples. (DOCX 54 kb)

Additional file 10: File contains a Q-Q plot of the CSF in the Knight
ADRC samples. (DOCX 52 kb)
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