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Abstract

Background: Heritability of Alzheimer’s disease (AD) is estimated at 74% and genetic contributors have been widely
sought. The ε4 allele of apolipoprotein E (APOE) remains the strongest common risk factor for AD, with numerous other
common variants contributing only modest risk for disease. Variability in clinical presentation of AD, which is typically
amnestic (AmnAD) but can less commonly involve visuospatial, language and/or dysexecutive syndromes (atypical or
AtAD), further complicates genetic analyses. Taking a multi-locus approach may increase the ability to identify individuals
at highest risk for any AD syndrome. In this study, we sought to develop and investigate the utility of a multi-variant
genetic risk assessment on a cohort of phenotypically heterogeneous patients with sporadic AD clinical diagnoses.

Methods: We genotyped 75 variants in our cohort and, using a two-staged study design, we developed a 17-marker
AD risk score in a Discovery cohort (n = 59 cases, n = 133 controls) then assessed its utility in a second Validation cohort
(n = 126 cases, n = 150 controls). We also performed a data-driven decision tree analysis to identify genetic and/or
demographic criteria that are most useful for accurately differentiating all AD cases from controls.

Results: We confirmed APOE ε4 as a strong risk factor for AD. A 17-marker risk panel predicted AD significantly
better than APOE genotype alone (P < 0.00001) in the Discovery cohort, but not in the Validation cohort. In decision
tree analyses, we found that APOE best differentiated cases from controls only in AmnAD but not AtAD. In AtAD, HFE
SNP rs1799945 was the strongest predictor of disease; variation in HFE has previously been implicated in AD risk in
non-ε4 carriers.
Conclusions: Our study suggests that APOE ε4 remains the best predictor of broad AD risk when compared to
multiple other genetic factors with modest effects, that phenotypic heterogeneity in broad AD can complicate simple
polygenic risk modeling, and supports the association between HFE and AD risk in individuals without APOE ε4.
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Background
Alzheimer’s disease (AD) is a devastating neurodegener-
ative disorder that results in memory impairment and
can also involve deterioration of language, visuospatial
and/or executive functioning abilities. As the world’s
population ages and the number of individuals with AD
grows, it will become increasingly important to identify
those at highest risk for AD during the earliest stages
of—or prior to—disease.
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Genetic predictors of AD hold strong potential for
identifying those at risk of developing disease. Indeed, a
large clinical study will launch in 2015 to assess the util-
ity of AD therapies given to individuals at highest gen-
etic risk for AD but who are still cognitively healthy [1].
These individuals, who carry the ε4 allele of apolipoprotein
E (APOE), have a 2-10x increased risk for developing AD
compared to non-carriers [2,3], but not all ε4 carriers go
on to develop disease [3,4]. Despite the vast number of
genetic studies of AD, which is estimated to be 74% herit-
able [5], no other common variants have been identified
that confer as high a risk as APOE ε4. In rare cases, AD is
familial, caused by an autosomal dominant mutation in
APP, PSEN1, or PSEN2 [6,7]. For sporadic late-onset AD
ss article distributed under the terms of the Creative Commons Attribution
by/4.0), which permits unrestricted use, distribution, and reproduction in any
ly credited. The Creative Commons Public Domain Dedication waiver (http://
) applies to the data made available in this article, unless otherwise stated.

mailto:Jennifer.Yokoyama@ucsf.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Yokoyama et al. BMC Neurology  (2015) 15:47 Page 2 of 11
(LOAD), numerous common variants of very low effect
(odds ratio [OR] ~ 1.1-1.3) have been identified through
genome-wide association studies (GWAS) and replicated
across multiple large [8], and diverse populations [9,10].
More recently, rare variants (<1% allele frequency) of lar-
ger effect size have also been identified as risk conferring
(TREM2 0.3% [11], PLD3 < 0.5% [12], MAPT 0.3% [13]) or
protective against (APP 0.01% [14] to 0.62% [15]) AD.
In addition to genetic heterogeneity, there is also clinical

heterogeneity in AD. The majority of patients present with
amnestic syndromes (AmnAD) but approximately 6-14%
of AD patients demonstrate atypical clinical syndromes
(AtAD) [16]. These include 1) posterior cortical atrophy
(PCA), characterized by predominant visuospatial deficits
[17]; 2) the logopenic variant of primary progressive apha-
sia (lvPPA) [18], characterized by loss in phonologic short-
term memory; and 3) dysexecutive/behavioral AD [16]
characterized by loss of executive function and/or behav-
ioral changes with retention of memory function.
Genetic and phenotypic heterogeneity strongly support

the notion that multiple genetic variants of small effect
contribute to disease susceptibility. A multi-locus ap-
proach may increase the ability to identify individuals at
highest risk for any AD syndrome. The multi-locus ap-
proach has had modest success in LOAD, with polygenic
risk scoring approaches associating better with LOAD
diagnoses and age of onset than APOE genotype alone
[19-21]. However, most studies have focused on clinically
homogeneous groups with primary amnestic presentations.
In this study, we investigated two different strategies

for polygenic risk assessment of clinically heterogeneous
AD. First, we took a traditional approach and developed
and assessed the utility of a multi-marker genetic risk
score to predict AD. The risk score was based on a Dis-
covery cohort association study that sought to replicate
previous AD findings and assess additional candidate
variants for their association with disease risk. The risk
score was then tested for its predictive ability in a separate
Validation cohort. Second, we used a more novel decision
tree analysis [22] to identify genetic and demographic risk
factors for AD. This data-driven method has been used in
diverse clinical contexts [23-26] to predict binary outcomes,
but is largely unutilized in the prediction of AD diagnosis.
It allowed us to assess step-wise interactions between vari-
ables to identify the factors that best predict AD.

Methods
Participants
Individuals 65- to 101-years-old (N = 216 males, N = 232
females) were evaluated at the University of California,
San Francisco Memory and Aging Center (UCSF MAC)
and had genotype data available for analysis. All partici-
pants were unrelated Caucasians (confirmed by multi-
dimensional scaling (MDS) plots or self-described for
those without GWAS data available). Non-Caucasians
were excluded due to the insufficient number of partici-
pants and potential for confounding background genet-
ics. All aspects of the study were approved by the UCSF
Institutional Review Board and written informed consent
was obtained from all participants and surrogates (as per
UCSF Institutional Review Board protocol).

Clinical assessment
All participants underwent a multi-step screening process
with an in-person visit at the MAC that included a neuro-
logic exam, cognitive assessment [27], and medical history.
Each participant’s study partner was also interviewed re-
garding functional abilities. A multidisciplinary team com-
posed of a neurologist, neuropsychologist, and nurse then
reviewed all potential participants. Participants included
in this study had a study partner (i.e., spouse, close friend).
The multidisciplinary team established clinical diagnoses
for cases according to consensus criteria for AD [16].
Atypical or concomitant diagnoses were established for
lvPPA [16,18], PCA syndrome [16,17], primary executive
AD [16], vascular disease [28], or dementia with Lewy
bodies (DLB) [29] according to consensus criteria. Indi-
viduals with primarily amnestic AD presentations were
considered “AmnAD” and those with less common clin-
ical syndromes (lvPPA, PCA, primary executive) or co-
morbidities (vascular disease, DLB) were considered as
“AtAD”. All control subjects underwent a similar multi-
step screening process, including study partner interview
and a consensus team of clinicians then reviewed all po-
tential participants. Controls included in this study had
Mini-Mental State Exam (MMSE) [30] scores ≥26 or a
Clinical Dementia Rating Scale (CDR) [31] of 0, no par-
ticipant or informant report of cognitive decline in the
prior year, and no evidence from their screening visit
suggesting a neurodegenerative disorder (per team neurol-
ogist’s clinical judgment). Individuals harboring a known
disease mutation were excluded from the study.

Genotypes
Genomic DNA was extracted from peripheral blood
using standard protocols (Gentra PureGene Blood Kit,
QIAGEN, Inc. – USA, Valencia, CA). Genotyping was
performed using one of three platforms: TaqMan, Seque-
nom, or via array genotyping. The method used for each
variant is provided in the Supplement (Additional file 1).
TaqMan Allelic Discrimination Assay was used for APOE
genotyping (rs429358 and rs7412) and others as noted,
and was conducted on an ABI 7900HT Fast Real-Time
PCR system (Applied Biosystems, Foster City, CA) ac-
cording to manufacturer's instructions. Sequenom iPLEX
Technology (Sequenom, San Diego, CA) was also used for
genotyping a subset of variants as per manufacturer’s in-
structions. The SpectroAquire and MassARRAY Typer
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Software packages (Sequenom, San Diego, CA) were used
for interpretation and Typer analyzer (v3.4.0.18) was used
to review and analyze data. Only genotypes with “Conserva-
tive” or “Moderate” quality calls were included in analysis.
A subset of genotypes was also obtained from the Illumina
Omni1-Quad array genotyping platform (Illumina Inc., San
Diego, CA), processed using manufacturer’s instructions.
A total of 75 variants were genotyped in all subjects and

analyzed for association with AD risk. These variants are a
culmination of different, on-going studies to evaluate the
effect of genes involved in neurodegenerative disease, neu-
rodevelopment, social function, behavior, neuropsychiatry,
and language on diseases like AD and frontotemporal de-
mentia (FTD). These included polymorphisms previously
associated with: 1) risk for AD or other neurodegenerative
disease; 2) neuropsychiatric phenotypes implicated in de-
mentia risk (e.g., depression [32-34], dyslexia [27]; 3) cog-
nitive protection [35]. A full list of variants, associated
phenotypes, and accompanying references is provided in
Additional file 1. Inclusion criteria for analyzed markers
were: >80% non-missing genotypes, ≥0.01 minor allele fre-
quency (MAF), and Hardy-Weinberg equilibrium (HWE)
P > 0.001. The average call rate was 98% for all variants.

Analysis
Association study
The study cohort was divided into two groups, a first
stage “Discovery” cohort for development of the AD risk
score and a second stage “Validation” cohort with which
to test the risk scoring method developed in the Discov-
ery cohort. We first conducted association analysis of all
markers meeting inclusion criteria in the Discovery
cohort. Analyses were performed in PLINK as a logistic
regression under an additive model [36].

Risk scoring
For scoring, we ranked all findings by p-value and then re-
moved SNPs that were in linkage disequilibrium (LD, r2 >
0.8) in our dataset; the single most strongly associated
SNP of a set of linked markers was retained. Using the un-
linked markers we created raw scoring files for each top
finding, iteratively adding the next most significant finding
to each scoring set (i.e., 1st marker in first set, 1st and 2nd

markers in second set, etc.). Reference alleles were estab-
lished in the scoring files such that all effects were in the
same direction of conferring risk (e.g., a SNP with an em-
pirical OR 0.1 for the reference minor allele would be
switched such that the major allele was the reference allele
for scoring). Using this paradigm, we created scoring sets
for the top findings that were not in LD.
We implemented the ‘SNP scoring’ algorithm in PLINK

to first assess the predictive ability of each score set (A-Z)
in the Discovery dataset for evaluative purposes. We com-
pared the risk scores for each set against the true
phenotypes using receiver operating characteristic (ROC)
curves and used the resulting area under the curve (AUC)
values to determine the optimal score set, with higher
AUC values representing better sensitivity and specificity.
The optimal score set was determined as follows. First,
score sets were evaluated in two ways: 1) by simple con-
secutive comparisons of AUC values to identify the set at
which AUC is largest, and 2) by statistical comparisons of
a given set’s ROC curve AUC (AUCi) versus the previous
set’s ROC curve AUC (AUCi-1) and versus the APOE-only
score’s AUC (AUCA). We then iteratively evaluated sets to
determine the maximum AUC, stopping when two con-
secutive sets each resulted in decreases of AUC as com-
pared to the previous set (i.e., AUCi > AUCi+1 & AUCi >
AUCi+2). After determining this optimal set, we used the
same scoring file to create risk scores for the Validation co-
hort and assessed the AUC of the resulting ROC curve to
determine the generalization of our risk scoring method in
an independent dataset. All ROC analyses were performed
in Stata10/MP (StataCorp LP, College Station, TX).

Decision tree analysis
To explore and evaluate the diagnostic potential of the
genetic variants available with ROC curves, we used the
ROC4 software platform (ROC4.22.exe; http://www.stan-
ford.edu/~yesavage/ROC.html). The software utilizes a
user-set weight of sensitivity and specificity (kappa) to
choose the predictive variable and value that best divides
the sample. The sample is then divided on the value of
the variable, which is most predictive based on this sen-
sitivity and specificity. Following this, the program per-
forms the same analysis amongst the subgroups created
by the previous step. The process continues until a stop-
ping rule is enforced. The output after stopping rules
come into place is a “decision tree” which shows the var-
iables and interactions between them in predicting the
outcome of interest. We chose a kappa weight of 0.5 in
order to balance efficiency (sensitivity and specificity
were equally weighted). There were three stopping rules:
when subgroup totals were less than 10, when a signifi-
cance value corresponding to a multiple-testing-corrected
Χ2 test greater than P = 0.01 was reached, or when a three
way interaction was reached. We performed three ROC
analyses: one combined analysis of controls and all types
of AD patients, one for the controls and AmnAD, and one
for controls and AtAD. The ‘gold standard’ binary score
was case/control outcome for any AD clinical diagnosis.
Additional predictors included sex (0/1 for male/female),
age (in years), and all genetic variants passing quality con-
trol (0/1/2 for dose of minor frequency allele).

Results
In total, N = 185 AD cases and N = 283 cognitively normal
controls were included in the analysis. Demographics for
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Table 1 Sample demographics

Discovery AmnAD AtAD Control

N 42 17 133

Age (mean ± SD) 76.2 ± 7.9 73.3 ± 6.5 73.9 ± 6.2

% Female 42.9% 41.2% 57.1%

Education (years, mean ± SD) 16.3 ± 2.5 16.5 ± 2.9 17.3 ± 2.1

% APOE4 carrier 64.3% 41.2% 20.3%

Validation AmnAD AtAD Control

N 84 22 150

Age (mean ± SD) 80.7 ± 8.4 80.9 ± 9.3 76.8 ± 7.4

% Female 53.6% 27.3% 53.3%

Education (years, mean ± SD) 15.8 ± 3.1 16.1 ± 4.8 17.4 ± 2.1

% APOE4 carrier 49.4% 36.4% 24.0%

Global AmnAD AtAD Control

N 126 39 283

Age (mean ± SD) 79.2 ± 8.5 77.6 ± 9.0 75.4 ± 7.0

% Female 50.0% 33.3% 55.1%

Education (years, mean ± SD) 16.0 ± 2.9 16.7 ± 3.1 17.4 ± 2.1

% APOE4 carrier 55.2% 38.5% 22.3%

Demographic summary of amnestic Alzheimer’s disease (AmnAD) cases,
atypical AD (AtAD) cases and controls.

Discovery Cohort by Diagnosis

Total=192

Control
Amnestic AD
Other AD

Replication Cohort by Diagnosis

Total=256

Control
Amnestic AD
Other AD

Figure 1 Diagnosis breakdown. Each cohort’s composition by
diagnosis is shown with controls in blue, amnestic AD in red and
other (atypical) AD in yellow.
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each group are shown in Table 1. A total of 192 (59 cases,
133 controls) individuals were in the first stage Discovery
cohort and 276 (126 cases, 150 controls) were in the sec-
ond stage Validation cohort. Of the Discovery cohort,
21.9% were AmnAD and 8.9% were AtAD (17 Total, 7
lvPPA, 3 PCA, 3 primarily executive AD, 2 AD with con-
comitant vascular disease, 2 AD with concomitant DLB;
Figure 1). In the Validation cohort, 30.4% were AmnAD,
and 8.0% were AtAD (22 Total, 7 lvPPA, 1 PCA, 13 AD
with vascular disease, 1 AD with DLB).

Confirmation of AD risk variants and establishment of a
17-marker risk assessment
We first performed an association study in the Discovery
cohort as a small-scale replication study of previously
identified risk variants for AD in our clinically heteroge-
neous cohort. We then used this analysis to establish a
ranked order by which we could iteratively add variants
into a polygenic score to evaluate their utility for risk
assessment. In our analysis, only the well-established
APOE ε4 allele (P = 1.36 × 10−6), with an estimated OR =
4.28, met strict significance after Bonferroni correction for
multiple testing (Table 2). Seven other variants had nom-
inal p-values of P < 0.05. The second strongest association
was with the rs1799945 SNP in HFE (P = 1.64 × 10−3,
Table 2 Association results

Gene SNP OR STAT P MAF

APOE rs429358/rs7412 4.28 4.83 1.36E-06 0.20

HFE rs1799945 2.83 3.15 1.64E-03 0.15

PICALM rs3851179 0.47 −3.04 2.37E-03 0.42

CR1 rs6701713 0.42 −2.65 0.01 0.19

SLC6A4 rs2020942 1.81 2.63 0.01 0.40

TPH1 rs1799913 0.64 −2.02 0.04 0.44

KIAA0319 rs4504469 0.60 −2.02 0.04 0.35

CDC42BPA rs1320490 1.63 1.93 0.05 0.20

TMEM175 rs6599389 0.41 −1.81 0.07 0.08

SORL1 rs2070045 1.63 1.74 0.08 0.22

CNTNAP2 rs17236239 0.66 −1.61 0.11 0.16

ATP2C2 rs8053211 1.45 1.56 0.12 0.43

CD2AP rs9349407 1.48 1.55 0.12 0.29

TPD52 rs7814569 1.79 1.53 0.13 0.09

COMT rs4680 0.72 −1.41 0.16 0.50

C9ORF72 rs3849942 1.42 1.38 0.17 0.24

CPE rs11186856 0.33 −1.37 0.17 0.33

SORL1 rs12285364 0.42 −1.34 0.18 0.04

RIT2 rs4130047 0.70 −1.33 0.18 0.31

MOBP rs1768208 0.72 −1.3 0.19 0.29

Top 20 association results in the Discovery cohort. Only APOE was significant
after Bonferroni correction for multiple testing. OR – odds ratio; STAT – test
statistic; MAF – minor allele frequency.



Table 3 Score set evaluation statistics

Score AUC ± SE P-val vs. A P-val vs. Prev. ΔAUC

A 0.69 ± 0.04 N/A N/A N/A

B 0.75 ± 0.04 0.01 0.01 0.056

C 0.79 ± 0.03 0.0018 0.02 0.038

D 0.81 ± 0.03 0.00010 0.18 0.021

E 0.83 ± 0.03 <0.00001 0.13 0.023

F 0.84 ± 0.03 <0.00001 0.64 0.005

G 0.85 ± 0.03 <0.00001 0.36 0.011

H 0.85 ± 0.03 <0.00001 0.76 0.003

I 0.86 ± 0.03 <0.00001 0.35 0.008

J 0.86 ± 0.03 <0.00001 0.42 0.006

K 0.87 ± 0.03 <0.00001 0.27 0.010

L 0.86 ± 0.03 <0.00001 0.11 −0.011

M 0.87 ± 0.03 <0.00001 0.35 0.005

N 0.86 ± 0.03 <0.00001 0.55 −0.004

O 0.87 ± 0.03 <0.00001 0.57 0.004

P 0.87 ± 0.03 <0.00001 0.76 −0.001

Q 0.88 ± 0.03 <0.00001 0.02 0.007

R 0.87 ± 0.03 <0.00001 0.90 −0.001

S 0.87 ± 0.03 <0.00001 0.82 −0.001

T 0.88 ± 0.03 <0.00001 0.67 0.002
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OR = 2.83). Variation in the hemochromatosis gene has
previously been associated with AD in numerous large
meta-analyses [37-39]. Two established risk factors for
AD identified by GWAS were nominally associated in
our study but with an opposite direction of association,
rs3851179 in PICALM (P = 2.37 × 10−3, OR = 1.87) [40,41]
and rs6701713 in CR1 (P = 0.01, OR = 0.42) [40,42]. More
novel AD risk candidates implicated by our study included
rs2020942 (P = 0.01, OR = 1.81), a SNP tagging the variable
number tandem repeat in the serotonin transporter gene,
SLC6A4, most often associated with depression [43,44];
rs1799913 (P = 0.04, OR = 0.64) in TPH1, an established
depression risk factor [45] that was recently associated with
depression in AD [34]; rs4504469 (P = 0.04, OR = 0.60) in
KIAA0319, which was associated with dyslexia [46]; and
rs1320490 (P = 0.05, OR = 1.63) in CDC42BPA, previously
associated with reading ability [47].
By iteratively adding genetic variants, we found that a

risk score panel comprising 17 variants (“Q”) was the
best predictor of AD status (Table 3; Figure 2). When
evaluated alone, APOE genotype had modest predictive
value for differentiating AD cases from controls. The
17-marker risk score had a significantly better AUC
and was better at predicting AD risk than APOE alone
(P < 0.00001; Figure 3).
U 0.87 ± 0.03 <0.00001 0.88 −0.001

V 0.88 ± 0.03 <0.00001 0.30 0.005

W 0.88 ± 0.03 <0.00001 0.27 0.005

X 0.89 ± 0.03 <0.00001 0.89 0.001

Y 0.89 ± 0.03 <0.00001 0.90 0.001

Z 0.89 ± 0.02 <0.00001 0.25 0.007

Each score set was evaluated for AUC of the ROC curve to assess predictive
ability. Score Q (in bold) was determined the best performing scoring set
given the following two sets resulted in consecutively lower AUC values. This
resulted in a final score set, Q that had a statistically significant better AUC
than just APOE (set A) alone, P < 0.00001.
Genetic risk score does not predict AD better than APOE
in a separate cohort
When evaluated in the Validation cohort, the “Q” risk
scoring method did not perform better than APOE alone
(Table 4; Figure 3). The 17-marker gene score resulted
in 65% maximal correct classification of individuals, with
a limited sensitivity (54%) and specificity (73%; Figure 4).
Removing excess AmnAD patients from the Validation
group to better match the proportion of AtAD individuals
in the Discovery cohort did not improve the performance
of the multi-marker risk score (Additional file 2).
Decision tree analysis identifies genetic heterogeneity in
amnestic versus atypical AD
We postulated that the clinical heterogeneity between
the Discovery and Validation cohorts might be contrib-
uting to the failure of the 17-variant risk score to differ-
entiate AD cases from controls better than APOE
genotype alone. Under an alternative model, the genetic
risk for AmnAD is different from that for AtAD. In
order to identify genetic and/or demographic criteria
that are most useful for accurately differentiating all AD
cases from controls and to test whether AmnAD and
AtAD share disease predictors or are distinct in their
risk profiles, we performed data-driven decision tree
analyses. We performed three analyses, one in all AD
cases (N = 165) versus controls (N = 283), one with only
AmnAD (N = 126) versus controls, and one with AtAD
(N = 39) versus controls.
In the analysis with all AD cases, carrying an APOE ε4

allele was the first differentiator of cases from controls
(Figure 5). Amongst individuals carrying the ε4 risk al-
lele, the next risk predictor was being ≥77 years old. Of
these eldest individuals, the next differentiator was car-
rying one or more of the minor allele for rs4343 in ACE,
an AD-risk gene [48,49]. The fourth differentiator of this
subgroup was being homozygous for the major allele of
rs8053211 in ATP2C2, a gene associated with dyslexia
and other language traits [50,51], as carriers of one or
two copies of the minor allele had a higher risk for diag-
nosis of AD. Using these predictors, the model had a
predictive value positive (PVP) of 0.87, meaning that it
correctly predicted a positive AD diagnosis 87% of the
time. The sensitivity at this cut point was 0.71 and the
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specificity was 0.64 (Additional file 3). On the other side
of the tree, in individuals carrying no ε4 alleles, the next
differentiator of controls from cases was being <83 years
old. Of these individuals, not carrying any of the HFE
SNP, rs1799945, AD risk alleles was more predictive of
control status. Finally, carrying two minor alleles of the
DCDC2 SNP rs1091047 (a dyslexia gene [52]) was most
predictive of control status. In this final group, the
model had a predictive value negative (PVN) of 0.92,
meaning it correctly predicted a diagnosis of control 92%
of the time. The sensitivity and specificity at this cut point
were 0.64 and 0.73, respectively (Additional file 3).
In the analysis of AmnAD cases versus controls, carry-

ing an APOE ε4 allele was also the best differentiator of
cases from controls (Figure 6). Similar to the all-AD ana-
lysis, in individuals carrying the ε4 risk allele, the next
Discovery
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tivity at this cut point was 0.83 and the specificity was
0.48. On the other side of the tree, in individuals carry-
ing no ε4 alleles, the next differentiator of controls from
cases was being between 66–87 years old. In these older
individuals, there was another age differentiation
whereby being 66–77 years old predicted control status.
In this final group, the PVN was 0.92. The sensitivity
and specificity at this cut point were 0.64 and 0.67,
respectively.
The analysis of AtAD cases versus controls provided

striking contrast to the previous analyses. In this cohort,
carrying one or more minor alleles of the HFE SNP
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Table 4 Risk scoring results for the Discovery and
Validation cohorts

Score AUC ± SE P-val vs. A N

Discovery A 0.69 ± 0.04 N/A 192

Q 0.88 ± 0.03 <0.00001

Validation A 0.63 ± 0.03 N/A 256

Q 0.62 ± 0.04 0.7345

Evaluation metrics for the APOE-only risk score (“A”) and the 17-marker risk
score (“Q”). The 17-marker risk score predicted AD significantly better than
APOE alone in the Discovery (P < 0.00001) but not the Validation cohort. Area
under the curve (AUC) of the Receiver Operating Characteristic curves for A
and Q and p-values of their comparisons are provided.
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(rs1799945) was the first differentiator (Figure 7). In
those with HFE risk alleles, the next differentiator was
carrying ≥1 allele of the GRN variant, rs5848, which has
been associated with risk for AD [53], hippocampal
sclerosis [54,55], FTD [56], and bipolar disorder [57]. In
the final at-risk group, the PVP was 0.47, with sensitivity
and specificity of 0.62 and 0.74, respectively. On the
other side of the tree, the next differentiator predicting
control status was being homozygous for the minor al-
lele of GSK3B SNP rs13312998, which has also been as-
sociated with AD and FTD [58]. At this cut point, the
PVN was 0.93. The sensitivity and specificity were 0.43
and 0.87, respectively.

Discussion
In our association study, we found continuing support
for APOE, HFE, PICALM, CR1, SLC6A4, CDC42BP,
TPH1, and KIAA0319 as genetic risk factors for AD.
Using information from 17 variants combined into a
genetic risk score allowed us to predict clinically hetero-
geneous AD cases significantly better than APOE geno-
type alone, supporting the role of these variants as
predictors of AD risk in this primary Discovery group.
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Figure 4 Sensitivity and specificity for 17-marker scoring method
in Validation cohort. Percent sensitivity (black) and specificity (gray)
are plotted by numeric value based on the 17-marker scoring method.
Accepting sensitivity of 80% would render specificity of only 36%;
specificity of 80% would reduce sensitivity to 45.5%.
However, when we attempted to apply this polygenic
risk assessment to an independent cohort of clinically
heterogeneous AD patients for validation, the utility of
analyzing 17 variants was not significantly better than
analyzing APOE alone. Taken together, this suggests two
things. First, it suggests that APOE ε4 remains the best
predictor of AD risk, likely due to its strong effect, when
compared to multiple other risk factors with very mod-
est risk effects. Second, it suggests that phenotypic vari-
ability in AD complicates simple genetic risk modeling,
particularly when co-morbidities are suspected.
The fact that APOE ε4 is the most predictive variant

for amnestic AD but does not appear to be associated
with risk for atypical AD syndromes such as PCA and
lvPPA [59] likely contributes to the decreased specificity
of the genetic risk assessment; namely, carrying an ε4 al-
lele is associated with being affected in amnestic AD but
is also associated with not being affected by PCA or
lvPPA. Thus, APOE ε4 in the simple context of amnestic
AD is quite adept at predicting who will be a case versus
control, but is much less specific in the broader context
of all AD syndromes, inclusive of atypical presentations
and co-morbidities. Indeed, in our entire cohort of Dis-
covery + Validation samples, APOE ε4 was significantly
enriched in AmnAD but not AtAD cases when com-
pared to controls (AmnAD vs Control P = 3.08 × 10−7;
AtAD vs Control P = 0.1). A similar discrepancy due to
clinical heterogeneity may also underlie our association
of variants in PICALM and CR1 in the opposite direc-
tion of historical findings. An alternate methodology to
identify genetic and demographic factors that predict
case/control status in AmnAD and AtAD separately was
able to improve differentiation. Utilizing a decision tree
methodology, we found that APOE best differentiated
cases from controls only in AmnAD but not AtAD. In
contrast, HFE genotype was the best differentiating fac-
tor between AtAD cases and controls; the same variant
was also the first genetic risk factor for broad AD in in-
dividuals without APOE ε4. These findings are consist-
ent with prior research implicating HFE in AD risk in
individuals without APOE ε4 [60]. These results also
suggest that atypical presentations could represent a
distinct genetic class of AD, although the present study
was not designed to specifically address this question.
A recent study suggests that AtAD is more heritable
than AmnAD [61], supporting the theory that there are
additional genetic risk factors for AtAD that remain to
be elucidated. In the future, GWAS of larger, more
diverse cohorts of individuals with specific atypical
phenotypes (e.g., PCA) could identify novel genetic risk
factors specific to these AD syndromes. Phenotypic speci-
ficity in studies of amnestic AD may also provide add-
itional statistical power to identify risk factors of small
effect size.



Figure 5 Decision tree for all forms of Alzheimer’s disease. Binary decision tree created by receiver operator characteristic (ROC) analysis is
shown. Branching points represent the variable and cutting point which best predicts whether or not an individual will be diagnosed with any
form of Alzheimer’s disease (AD). Shaded boxes depict the variable used to separate each subgroup and unshaded boxes provide summary data
characterizing each subgroup. For more information on the genes depicted, please see Additional file 1.
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In an effort to rule out the possibility of misdiagnosis,
particularly in the AtAD group, we performed a post hoc
chart review of patients for which pathological data was
available (N = 25 AmnAD and N = 8 AtAD). All of these
individuals had AD pathology cited as a primary (N = 24
AmnAD, N = 5 AtAD) or major contributing factor (N = 1
AmnAD, N = 3 AtAD) that correlated with each patient’s
clinical presentation (Additional file 4). Although not ex-
haustive, this data suggests that AD pathology was cor-
rectly recognized as a major contributor to patients’
clinical syndrome in our patient cohort, and that the dif-
ferential genetic risk profile of AtAD potentially influences
its pathological heterogeneity when compared to AmnAD.
This study benefits from a two-staged discovery-

validation study design, inclusion of a broad spectrum of
clinical patients representing the phenotypic heterogen-
eity of AD, well-characterized cognitively normal con-
trols, and inclusion of many of the most replicated
genetic loci implicated in AD as well as several, more
novel gene candidates. The main limitations of this study
include the limited sample size, lack of pathological con-
firmation in all study participants, and the relatively
young age of the controls. In addition, Caucasian indi-
viduals were the sole participants in our study, which
potentially limits the scope of our findings. Co-morbid
depression was not assessed in this analysis and may be
a contributing factor to the associations with the
depression associated variants. This hypothesis requires
direct testing in a separate study.
We implemented a decision tree analysis to identify

genetic and demographic criteria most useful for accur-
ately differentiating AD cases from controls. With an
iterative, non-parametric approach, we used recursive
partitioning to identify individuals according to a binary
outcome of interest [22]. This method benefits from lim-
iting the use of restrictive assumptions like linearity,
additivity, and homoscedasticity, which are required by
most linear models [23]. This approach has been used in
a variety of clinical settings to identify variables of inter-
est in predicting binary outcomes such as identification
of AD patients who will have rapid cognitive decline
[24], presence of tuberculosis after multiple conflicting
tests [25], and ability to succeed in diabetes self-
management programs [26]. Decision trees are amen-
able for use in a clinical setting, where an individual’s
risk for the outcome of interest—in this case, AD—can
be estimated based on multiple predictive variables
that follow a logical progression. Testing whether the
factors identified in our decision tree analyses have
predictive value in a larger, independent cohort will
be critical for elucidating whether this risk assessment
has clinical utility, particularly with the inclusion of



Figure 7 Decision tree for atypical Alzheimer’s disease. Binary decision tree created by receiver operator characteristic (ROC) analysis is
shown. Branching points represent the variable and cutting point which best predicts whether or not an individual will be diagnosed with an
atypical form of Alzheimer’s disease (AtD). Shaded boxes depict the variable used to separate each subgroup and unshaded boxes provide
summary data characterizing each subgroup. For more information on the genes depicted, please see Additional file 1. NC - normal control.

Figure 6 Decision tree for amnestic Alzheimer’s disease. Binary decision tree created by receiver operator characteristic (ROC) analysis is
shown. Branching points represent the variable and cutting point which best predicts whether or not an individual will be diagnosed with an
amnestic form of Alzheimer’s disease (AmnD). Shaded boxes depict the variable used to separate each subgroup and unshaded boxes provide
summary data characterizing each subgroup. For more information on the genes depicted, please see Additional file 1. NC - normal control.
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pathologically confirmed cases and exclusion of amyloid-
positive ‘controls.’

Conclusions
We found that APOE genotype is the best predictor of
risk compared to a polygenic risk score when assessing
groups of clinically heterogeneous AD patients versus
healthy older controls. In decision tree analysis, we
found that AmnAD and AtAD have differential genetic
risk factors, which may account for the inaccuracy of the
traditional polygenic scoring method. Identifying indi-
viduals at highest genetic risk for AD could potentially
allow for earlier diagnosis and intervention, allowing the
opportunity to intervene with pathological processes
and/or provide support prior to clinical onset of symptoms.
These risk assessments will benefit from future work to
characterize genetic risk factors of clinically homogeneous
subtypes of AD in large, diverse populations.
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