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Abstract Resilience in executive functioning (EF) is charac-
terized by high EF measured by neuropsychological test per-
formance despite structural brain damage from neurodegener-
ative conditions. We previously reported single nucleotide
polymorphism (SNP) genome-wide association study
(GWAS) results for EF resilience. Here, we report gene- and
pathway-based analyses of the same resilience phenotype,
using an optimal SNP-set (Sequence) Kernel Association
Test (SKAT) for gene-based analyses (conservative threshold
for genome-wide significance = 0.05/18,123=2.8x10"°) and
the gene-set enrichment package GSA-SNP for biological
pathway analyses (False discovery rate (FDR) < 0.05). Gene-
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based analyses found a genome-wide significant association
between RNASE! 3 and EF resilience (p =1.33x107). Genetic
pathways involved with dendritic/neuron spine, presynaptic
membrane, postsynaptic density, etc., were enriched with as-
sociation to EF resilience. Although replication of these results
is necessary, our findings indicate the potential value of gene-
and pathway-based analyses in research on determinants of
cognitive resilience.

Keywords Memory - Executive functioning - Alzheimer’s
disease - Genes - Resilience - Pathways

Introduction

Cognitive impairment and dementia lead to immense personal,
family, and economic devastation in the US and worldwide.
Structural brain damage from vascular and degenerative dis-
eases is common in community-based elderly and can precip-
itate cognitive impairment and dementia. Covert brain infarcts
(Longstreth et al. 1998; Longstreth et al. 2002; Vermeer et al.
2007) and white matter hyperintensities (WMH) (Ikram et al.
2007; Longstreth et al. 1996; Debette and Markus 2010;
National Bioethics Advisory Commission 2007) are also com-
mon findings on magnetic resonance imaging (MRI) scans of
elderly people without dementia, stroke, or transient ischemic
attack. The increasing prevalence of these vascular lesions
occurs in parallel with rising incidence of Alzheimer’s disease
with age (Kukull et al. 2002). Most elderly people have path-
ological lesions by the time they die (Sonnen et al. 2007).
Imaging and pathology-defined lesions need not cause
dementia during life (Sonnen et al. 2011). Although structural
brain changes are common findings on MRI, some people
appear to be resilient to cognitive deficits in the presence of
these findings. People with essentially similar lesions can have
dementia, no symptoms at all, or anything in between.
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An extensive literature addresses the gap between brain
damage and retained cognitive functioning, often referred to
as “cognitive reserve” (Stern 2002, 2003). Many have focused
on identifying modifiable factors that can increase reserve
(Scarmeas and Stern 2003). Although biological substrates
of reserve have been investigated (Whalley et al. 2004), to
our knowledge, the only paper on genome-wide variability
associated with reserve was our earlier investigation.

Reed and colleagues (Reed et al. 2010) introduced the idea
of operationalizing reserve as residual cognitive functioning
after accounting for MRI-identified brain damage. Cognitive
resilience describes people whose cognitive functioning is
better than predicted based on their neuroimaging and
demographic characteristics. We emphasize our focus on
better-than-predicted cognition by using the term “resilience”
(Negash et al. 2011). Most importantly, this specific pheno-
type can be interrogated using modern genetic investigation.

Discase-based genetic discovery is an important line of
investigation that promises to improve our understanding of
conditions associated with late-life cognitive losses. These on-
going investigations offer the hope of identifying modifiable
biological targets to reduce the burden of specific diseases.
Resilience represents a complementary line of investigation
that addresses why some people may be able to accumulate
neuropathologic changes without expressing clinical demen-
tia. In our previous investigation, we found that resilience was
highly heritable (4°=0.76 with a standard error of 0.44)
(Mukherjee et al. 2012).

Genome-wide association studies (GWAS) are an important
first step with genome-wide single nucleotide polymorphism
(SNP) data. Additional gene-based and pathway-based analy-
ses may further contribute to understanding associations be-
tween genetic variants and phenotypes of interest. For exam-
ple, Peng and colleagues (Peng et al. 2010) reported that gene-
specific, rather than SNP-specific, analyses identified variants
associated with several phenotypes that were not associated at
genome-wide significance thresholds with any individual SNP.
Genes identified in this fashion in a single cohort were con-
firmed by meta-analysis of data from multiple cohorts,
suggesting that gene-based analyses may further illuminate
SNP-based analyses for any given sample size and may also
be more replicable than SNP-based analyses (Peng et al. 2010).

Beyond gene-based models, there is increasing recognition
of the potential contributions of pathway-based analyses, in
which variants in groups of genes that operate along a single
physiologic or developmental pathway are considered togeth-
er to predict the phenotype of interest (Ramanan et al. 2012b).
This approach identifies pathways exhibiting an enrichment of
genetic associations to the phenotype. Thus, we proposed that
a three-component approach—combining SNP-, gene-, and
pathway-based analyses of genome-wide SNP data—is likely
to best illuminate associations between genetic variants and
phenotypes. (Peng et al. 2010).
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To identify additional genetic mechanisms underlying EF
resilience, we complemented our previous GWAS with gene-
and pathway-based analyses of high-density genotype data.

Methods
Alzheimer’s disease neuroimaging initiative

Data used for this study were obtained from the ADNI data-
base (http://adni.loni.ucla.edu/). The ADNI was initiated in
2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharma-
ceutical companies and non-profit organizations. The primary
goal of ADNI-1 was to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological as-
sessments can be combined to measure the progression of
MCT and early AD. Determination of sensitive and specific
markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost
of clinical trials. Michael W. Weiner, MD, VA Medical Center
and University of California-San Francisco was the Principal
Investigator of this initiative. This $60 million, multiyear
public-private partnership involved many co-investigators
from a broad range of academic institutions and private cor-
porations. More than 800 participants, aged 55 to 90, were
recruited from across more than 50 sites in the US and
Canada. Longitudinal imaging data, including structural
1.5 T MRI scans, were collected on the full sample.
Neuropsychological and clinical assessments were collected
at baseline, and at follow-up visits of six-to-twelve month
intervals. Other available data used in the present analysis
included APOE genotype and genome-wide SNP data
obtained in the full ADNI-1 sample, as outlined in (Saykin
etal. 2010). Further information about ADNI can be found
in (Weiner et al. 2010) and at http://www.adni-info.org.
The study was conducted after Institutional Review Board
approval at each site. Written informed consent was obtained
from all study participants, or their authorized representatives.

1.5 T MRI neuroimaging

All participants received 1.5 T structural magnetic resonance
imaging (MRI). The neuroimaging methods utilized by
ADNI-1 have been described in detail previously (Jack et al.
2008) utilizing calibration techniques to maintain consistent
protocols across scanners and sites. Raw dicom data of T1-
weighted MP-RAGE scans acquired from 1.5 T scanners at
baseline visits from all participants were obtained via the
ADNI-1 database (http://www.loni.ucla.edu/ADNI/). In our
analyses we used presence of one or more lacunes, cortical
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volume (summed across entorhinal cortex, fusiform, pars
triangularis, caudal middle frontal, superior frontal, medial
orbitofrontal, rostral, middle frontal, and lateral orbitofrontal,
controlling for intracranial volume), volume of bilateral
hippocampus (controlling for intracranial volume), and the
natural log of WMH volume.

Psychometric composites for memory and executive
functioning

ADNI-1 participants received an extensive neuropsychological
assessment battery at each study visit, including several mea-
sures of memory and executive function. We applied modern
psychometric theory to item-level data from the ADNI-1
neuropsychological battery to develop composite scores sep-
arately for memory (ADNI-Mem) and executive functioning
(ADNI-EF). For executive functioning, we found that a bi-
factor model had the best fit to the data. We extracted factor
scores for the general factor defined by all of the items from
Mplus v5 (Muthén and Muthén 2006); this factor score is the
ADNI-EF score. For memory, we used a longitudinal single
factor model to account for different versions of the ADAS-
Cog and of the Rey AVLT. We used parameters from that model
to generate scores at each study visit, also using Mplus (Muthén
and Muthén 2006). Further details are provided in previously
published papers (Crane et al. 2012; Gibbons et al. 2012).

Genotyping and quality control

The ADNI-1 sample was genotyped using the Human 610-
Quad BeadChip (Illumina, Inc., San Diego, CA), resulting in
620,901 SNP and copy number variant (CNV) biomarkers.
The genotyping protocol followed the manufacturer’s instruc-
tions and is explained in detail in (Saykin et al. 2010).

Standard quality control procedures were performed on the
ADNI genotype data using PLINK v1.07 (Purcell et al. 2007).
Samples were excluded based on the following criteria: (1)
call rate per individual <95 %, (2) ambiguous sex identifica-
tion, (3) identity check with PI_ HAT >0.125 after exclusion of
individuals with no genetic consent. Markers were excluded
based on the following criteria: (1) call rate per SNP<95 %,
(2) Hardy-Weinberg equilibrium test in controls <10°°, (3)
minor allele frequency (MAF) <1 %.

APOEFE was genotyped at the time of screening. The two
previously established 4POE genotype SNPs (1rs429358,
1s7412) that characterize the €2/ €3/ <4 alleles were not
available on the Human610-Quad BeadChip array (Illumina,
Inc., San Diego, CA). These SNPs were genotyped by PCR
amplification followed by Hhal restriction enzyme digestion
and Metaphor Gel and were available in the ADNI database
(Potkin et al. 2009). They were added to the ADNI-1 genotype
data based on the reported APOE <2/ £3/ 4 status before the
assessment of sample quality.

To limit possible confounding effects of population ances-
try, we restricted analyses to non-Hispanic Caucasian partic-
ipants. To select non-Hispanic Caucasian participants in the
ADNI cohort, 988 founders of HapMap (The International
HapMap Project 2003) phase 3 samples were used as refer-
ence populations which consist of 11 known population and
PLINK multi-dimensional scaling analysis was performed on
the combined genotype data of the ADNI-1 and the HapMap
phase 3 release 2. ADNI participants were selected if they
were grouped together with the HapMap CEU (Utah residents
with Northern and Western European ancestry from the Centre
d’Etude du Polymorphisme Humain (CEPH) collection) or
TSI (Toscani in Italy) participants. After the QC procedure
and exclusions for withdrawal of consent, 694 participants and
531,096 single nucleotide polymorphisms (SNPs) were select-
ed for the subsequent analyses and the genotyping rate in the
remaining samples was >0.995.

Population substructure

Population substructure was evaluated using Eigenstrat v4.2
(Price et al. 2006). The observed SNPs which passed quality
control were linkage disequilibrium LD-pruned (a) in a window
size of 1,500 SNPs calculate pairwise LD between each pair of
SNPs, b) remove one of a pair of SNPs if the LD is greater than
0.2 and then c) shift the window 150 SNPs forward and repeat
the procedure) and Eigenstrat was used to derive loadings for
the principal components (PCs) which were used to adjust for
population substructure to minimize spurious associations and
maximize power to detect true associations.

Genotype imputation

We used the ENIGMA protocol to pre-process the genotype
data (ENIGMAZ2 Genetics Support Team 2012). Briefly,
PLINK was used to exclude SNPs on the basis of standard
quality control (QC) criteria, e.g., low MAF (<0.01), poor
genotype calling (call rate <95 %), 90 % call rate per individ-
val and deviations from Hardy-Weinberg equilibrium
(< 107°). To obtain genotypes for SNPs not characterized on
the GWAS array, genome-wide imputation was performed
with Mach software (Li et al. 2010) using NCBI 1000
Genomes build 37 (UCSC hgl9) as the reference panel. We
took forward SNPs with imputation quality estimates of R*>
0.50 and performed further QC (95 % call rate; 1 % MAF and
Hardy-Weinberg equilibrium test in controls <10~°).

GWAS analysis
We performed a GWAS on the executive functioning com-
posite adjusting for the memory composite, demographics,

Hachinski score (a measure of the vascular component of
dementia (Hachinski et al. 1975), brain imaging parameters
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and population substructure (first three principal components)
to examine the main effect of each SNP using PLINK (Purcell
et al. 2007) using the 1000G imputed data. Compared to our
previous analysis (Mukherjee et al. 2012), this study utilized
genotype data with substantially increased genomic coverage
due to imputation.

Gene-wide analysis using SKAT-O

We mapped SNPs to genes using the bl137 annotation file
downloaded from the dbSNP website (http://www.ncbinlm.
nih.gov/projects/SNP/, accessed on 11/30/2011). We assigned
3,377,248 SNPs to each of 18,123 autosomal genes according to
genomic positions on the UCSC Genome Browser hg19 assem-
bly, using the official gene boundaries as delimiters (i.e., no
extended gene window was used). The joint effects of variants
in each of these gene regions were tested for association with
resilience using Sequential Kernel Association test (SKAT).

Burden tests are commonly used for rare variant analysis,
and are more powerful when a large proportion of variants are
causal and effects are in the same direction (Lee et al. 2012).
SKAT is more powerful when a small proportion of variants
are causal, or the effects have mixed directions (Lee et al.
2012). SKAT uses a multiple regression model to directly
regress the phenotype on genetic variants in a region and on
covariates, using a variance component score test to account
for rare variants. SKAT is a score test, so type I error rates are
protected for any choice of weights.

Both scenarios for causality and direction are plausible
when the underlying biology is unknown. We used the
Optimal Unified Test (SKAT-O), which uses data to adap-
tively estimate p to maximize power and minimize p-values
(Lee et al. 2012) where the SKAT-O test statistic is given
by:

Qp - pQBurden + (1_p)QSKAT; OSPSL

where SKAT (p=0) and Burden (p=1) are special cases. This
method was developed for rare variant analyses, but can be
used for common variants if we specify a 3;; (uniform)
weight on each of the SNPs.

Similar to the GWAS model, we performed a gene-wide
analysis on the executive functioning composite adjusting for
the memory composite, demographics, Hachinski score, brain
imaging parameters and population substructure.

Pathway analysis

Pathway analysis of the GWAS results was performed to
identify functional gene sets with important association with
the resilience phenotype. We used the GSA-SNP package
(Nam et al. 2010) to identify pathways with enrichment of
association to EF resilience. This software uses a competitive
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enrichment algorithm (Goeman and Biihlmann 2007), where
the null hypothesis holds that a pathway-phenotype associa-
tion is not different from all other pathway-phenotype associ-
ations under analysis. Competitive enrichment strategies are
robust to the effects of genomic inflation due to population
stratification or other confounding factors (Holmans 2010;
Fridley and Biernacka 2011). In GSA-SNP, the significance
score for each gene under analysis was calculated as the—log
of the k-th best SNP-level p-value in the gene. Corresponding
with the authors’ recommendation (Nam et al. 2010), we
selected k=2 to limit the effects of both single, highly-
significant loci and of spurious SNP-level associations on
driving pathway enrichment (Ramanan et al. 2012a).

We used the Gene Ontology database to define gene sets
representing biological pathways. 1454 gene sets were exam-
ined out of which 825 were biological processes, 233 were
cellular components and 396 were molecular functions. Each
gene set (representing a pathway) was then assessed for phe-
notype enrichment by the Z-statistic method (Kim and Volsky
2005), which incorporates the gene-wide significance scores
and the number of genes within each set. In addition, since
small pathways can exhibit spurious phenotype associations
due to large single locus effects (Holmans 2010), and since
large pathways are more likely to exhibit association by
chance alone (Elbers et al. 2009), we restricted analyses to
gene sets containing 5-200 genes. To correct for multiple
hypothesis testing, we applied the False Discovery Rate
(FDR) (Benjamini and Hochberg 1995) to the p-values gen-
erated by the enrichment algorithm (Ramanan et al. 2012a).

Results
SNP association findings

Of the 692 individuals who passed sample quality control,
complete data were available for 681 of them (Table 1). The
genomic inflation factor (A) with three principal components
was 1.0 for the GWAS analysis. Similar to the results reported in
our earlier paper (Mukherjee et al. 2012), the top two SNPs
resided in the RNASE/3 (ribonuclease, RNase A family, 13)
gene region. The top SNP in this analysis was 1s3648346 (Chr
14) with an unadjusted p -value of 6.43 x 107%. rs3648348, which
was reported in our earlier paper (Mukherjee et al. 2012), was
also suggestive with a p-value of 1.18x 107" A list of top SNPs
for this analysis can be found in Table 4 in the Appendix.

Gene-based analyses

The most significant genes are summarized in Table 2.
RNASEI3 with a p-value of 1.33x107" had a genome-wide
level of significance (0.05/18,123=2.8x10"°). Other genes
with suggestive associations included Fatty Acyl CoA
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Table 1 Description of participants included in the analyses

Baseline diagnosis NC* MCI* AD* Total

# of participants 189 330 162 681

Sex: (M/F) 105/84 214/116 89/73 408/273
Age 76.0 (4.9) 75.0 (7.4) 758 (7.4) 75.5(6.8)
Education (years) 16.1 (2.7) 15.8 (3.0) 149 (3.1) 15.6 (2.9)
ADNI-Mem 0.96 (0.5) —0.09 (0.6) —0.87 (0.6) 0.02 (0.9)
ADNI-EF 0.72 (0.7) 0.01 (0.8) —0.92 (0.8) —0.01 (1.0)
Hachinski score 0.54 (0.7) 0.61 (0.7) 0.67 (0.7) 0.60 (0.7)
Stroke/Infarcts (Y/N) 17/172 28/302 13/149 58/623
Cerebral cortex thickness (mm) —186.29 (19.6) —196.18 (21.1) —202.27 (22.4) —194.88 (21.8)
Hippocampal volume (cm3) 043 (0.4) —0.06 (0.5) —0.41 (0.5) —0.01 (0.6)
White matter hyperintensities volume (cm®)° —1.56 (1.6) -1.39(1.7) —0.85(1.6) -1.31(1.7)

All summary statistics for variables are reported as Mean (S.D) unless otherwise noted
#NC = Normal Controls; MCI = Mild Cognitive Impairment patients; AD = Alzheimer’s Disease cases

® White matter hyperintensities was natural log-transformed

Reductase 2 (FAR2) and Tubulin Polymerization-Promoting
Protein (TPPP2).

Pathway analysis

We identified 111 pathways with enrichment of association to
EF resilience (FDR p <0.05). The top 20 pathways in terms of
p-value and FDR are presented in Table 3 and a complete list
of'the 111 enriched pathways are provided in Supplementary
Table 1. The top pathways were related to dendritic/neuron
spine, presynaptic membrane, and postsynaptic density. Some
genes associated with late-onset AD such as PTK2B,
PICALM, MS4A42, APP were present in the top 10 pathways
(See Supplementary Table 1). The p-values for SNPs in these
genes or for the genes themselves were unremarkable in the
GWAS analyses (Mukherjee et al. 2012).

Table 2 Top 10 Genes for resilience using SKA7-O (in terms of
p-values)

Gene Chr # SNPs mapped SKAT-O Beta(1,1)
to the gene P-value
RNASEI3 14 2 1.33x1077
FAR2 12 189 3.72x107°
TPPP2 14 2 9.60x107°
MLH3 14 13 1.15x107*
BIRC3 11 4 1.30x107*
GDPDI 17 14 131x107*
GTF3C5 9 35 1.50x107*
TLE2 19 15 2.19x107*
FECH 18 56 2.49x107*
STXBPSL 3 1064 2.58x1074

Discussion

In these analyses of the executive functioning resilience phe-
notype, we identified one gene—RNASE/3—with a genome-
wide significant association, and found associations of path-
ways related to dendritic/neuron spine, presynaptic mem-
brane, and postsynaptic density. RNASE/3 has only two
SNPs in the data set, one of which (rs3748348) is observed
and the other (rs3748346) is imputed. Replication analyses
will be critical to determine the relevance of RNASE 3 to this
phenotype.

Beyond RNASE3, gene-based analyses showed partial but
not complete overlap with our previously reported SNP results
(Mukherjee et al. 2012). SNPs in 7PPP2 are in close LD with
SNPs in RNASE3, as noted in our previous paper (Mukherjee
etal. 2012). None of the individual SNPs in 7PPP2 were
closely associated with our phenotype (the smallest p-
value was 2.5x107° for rs1243459). Our gene-based
analyses strengthened our interest in RNASE/3 and
TPPP2. The optimized SKAT-O approach accounts for
the proportion of variants which may be causal and
have mixed directions of the effects of SNPs which
map to a gene. This gene-wide approach we used en-
abled us to summarize SNP heterogeneity (direction of
effects) within each gene with a single number. This is
biologically-meaningful for a complex trait like EF re-
silience where true associated genes are likely to have
combinations of variants with heterogeneous effect sizes and
directions depending on the population being analyzed. Gene-
based (and pathway-based) analyses can overcome this rela-
tive limitation of SNP-based approaches.

This reduced the number of statistical tests performed and
enabled us to discern signals from combinations of SNPs that

@ Springer



Brain Imaging and Behavior

Table 3 Top canonical pathways
(False Discovery Rate <0.0001)

for resilience of executive
functioning

? Entries are displayed as: number

Pathway (gene set) name Set size® Uncorrected P-value
Dendritic/Neuron spine 151 (131) 1.27x10712
Presynaptic membrane 47 (42) 8.68x107!!
Postsynaptic density/ Dendritic spine head 111 (100) 2.00x1071°
Calcium ion transmembrane transporter activity 109 (104) 3.75x1071°
Ras guanyl-nucleotide exchange factor activity 93 (86) 4.67x1071°
Rho guanyl-nucleotide exchange factor activity 75 (68) 9.33x1071°
Calmodulin binding 161 (150) 1.11x107°
Calcium channel activity 92 (89) 1.89x107°
Guanyl-nucleotide exchange factor activity 167 (151) 2.91x107°
Cell adhesion molecule binding 52 (46) 5.06%107°
Synaptic membrane 204 (179) 9.49x107°
Divalent inorganic cation transmembrane transporter activity 129 (120) 321x107°
Transmembrane receptor protein tyrosine phosphatase activity 18 (18) 3.53x107°
Regulation of phospholipase C activity 65 (61) 522x107°
Voltage-gated ion channel activity 177 (156) 541x107®
Positive regulation of phospholipase C activity 64 (60) 5.54x107°
Chloride channel activity 72 (60) 8.36x10°®
Axon part 121 (106) 8.48x107°
Synapse organization 83 (71) 1.03x1077
cAMP metabolic process 32 (30) 1.38x1077

of genes in the set (number of
genes from the GWA data)

were not visible when we focused on only individual SNPs as
is usual with SNP-based GWAS.

Our identification of reinforcing associations between the
executive functioning resilience phenotype and pathways fun-
damental to production and loss of neurons, fate determina-
tion, and pre- and post-synaptic structure and function raises
obvious potential links between neuron biology and resilience
to neurodegenerative disease. Several of these pathways have
previously been implicated in LOAD, in research on the loss
and alteration of dendritic spines induced by amyloid 3 (A3)
in adults (Knobloch and Mansuy 2008), and in aberrations in
synapse composition, shape and density induced by A7 olig-
omers (Lacor et al. 2007). Synaptic proteins found in presyn-
aptic membranes were found to be differentially affected in
AD brains compared to controls which suggest differential
involvement of synaptic components in AD (Shimohama et al.
1997). Brains affected with Alzheimer’s disease show a re-
duced number of synapses, and stereological and biochemical
analysis has shown that this reduction in synaptic density
correlates better with cognitive decline than with the accumu-
lation of plaques (Harel et al. 2008; Harold et al. 2009).
Furthermore, expression studies indicate that there are differ-
ences in expression of genes that regulate neuron differentia-
tion between people with AD and cognitively normal controls
(Blalock et al. 2011). Further studies investigating the signif-
icance of these pathways appear warranted given the present
results. Caution is certainly warranted when interpreting
these results, given that this is a first report based on a
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relatively small sample. It will also be critical to assess
disease associations with genes associated with the cognitive
resilience phenotype and AD or other neurodegenerative
diseases.

Gene-based and pathway-based analyses afford the oppor-
tunity to detect complementary information that would not
have been casily observed from SNP-based GWAS alone.
Applying these complementary approaches to standard
GWAS, we were able to identify additional biological under-
pinnings of EF resilience.
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Table 4 Top SNPs for GWAS of

executive functioning resilience CHR SNP Base position Minor allele Beta P-value Nearest gene
14 1s3748346 21501095 C 21 6.43x107° RNASEI3
14 153748348 21501195 A .20 1.18x1077 RNASEI3
14 15112249116 75566463 T 45 574x1077 NEK9
14 1572736225 75564726 A 45 5.74x1077 NEK9
14 157143599 75613178 T 45 581x1077 TMEDI0
14 1572736242 75588320 A 45 581x1077 NEK9
14 1572736209 75540434 G 45 8.71x1077 ZC2HCIC
14 1572734300 75530066 T 45 8.71x1077 ACYPI
14 1572736204 75535153 A 45 8.71x1077 ZC2HCIC
14 1568179743 75507657 A 44 1.12x10° MLH3
6 1s6933137 166142202 G .53 4.05x10°° PDEI0A
6 156908907 166141724 A .53 4.05x10°° PDEI0A
6 1511962446 166153398 A 52 4.33x10°° PDEI0A
6 rs59751101 166165863 G .52 4.33x10°° PDEI0A
6 1s59392157 166167530 C .52 4.33%107°° PDEI0A
6 156921426 166149261 T 52 4.33%107°° PDEI0A
6 rs11970244 166174747 C .52 4.42%107° PDEI0A
12 rs10771511 29437217 C —-.16 6.62x1076 FAR2
2 rs16987794 20748761 C 23 7.88x107¢ HSIBP3
6 156912825 166160068 T .50 8.58x10°° PDEI0A
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